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Abstract. This paper describes an intelligent system for the pre-
diction of forest fire risk in Galicia, a region in north-west Spain.
The system has been designed to calculate a risk fire index for each
of the 360 squares of 10x10 kms into which the area map has been
divided digitally. In our research, the problem was approached us-
ing a feedforward neural network. The information used to train the
network was gathered at five meteorological stations on a daily ba-
sis from 1985 to 1999, and consisted of basically meteorological
data, namely temperature, humidity and rainfall, in conjunction with
previous fire records for the areas represented by squares. Network
topologies were tested using 125,156 training data and validated over
13,906 test samples, and that achieving the best performance was the
6-9-1 topology. Finally, our results indicate that the system performs
satisfactorily, with a sensitivity of 0.857 and a specificity of 0.768.

1 INTRODUCTION

The forest fire season of the year 2000 in southern Europe was char-
acterised by a loss of human life and substantial environmental dam-
age. Over the last two decades, a total of more than ten million
hectares of wooded areas in the European Union have been affected
by fire. Similarly, forest fires in Spain represent important costs,
namely in terms of

• Loss of life, the major consideration.
• Environmental damage resulting from a reduction in wooded ar-

eas. The concentration ofCO2 in the atmosphere are also affected.
For each ton of vegetable material burnt the atmosphere receives
30 to 40 kgs of carbon dioxide, which would normally be absorbed
by forests [8]. Other losses are more difficult to evaluate, such
as soil degradation, erosion, destruction of animal and plant life,
damages to the water cycle, etc.

• Financial costs are another consideration, particularly the millions
of euros allocated to preventative measures and fire-fighting cam-
paigns, not to mention the costs borne by the wood industry.

During the 1990s Galicia alone, representing a mere 5.8% of the
surface area of Spain, accounted for half the forest fires in Spain.
Over the last ten years, moreover, and despite the human and finan-
cial resources allocated to fire-fighting, the number of fires has in-
creased. Nearly half of the Spanish timber and lumber industry, val-
ued at around 811 million euros per year and employing 15,000 is
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located in Galicia [2, 16]. In terms of forest fire prediction in Europe,
therefore, Galicia is considered to be a particular challenge.

This paper describes our research into an intelligent forest fire
risk prediction system. Our approach was based on neural networks,
given their capacity for modelling non-linear functions. This subsys-
tem is part of a larger project funded by the European Regional De-
velopment Fund (ERDF), in which Galicia’s three universities (the
University of A Corũna, the University of Santiago de Compostela
and the University of Vigo) and several industries are involved. The
project has as its aim the prediction of forest fires and the manage-
ment of available fire-fighting resources.

2 BACKGROUND

Artificial Intelligence techniques have for some time been recognised
as appropriate tools for forestry management [14]. The first intelli-
gent systems with forest fire applications appearing in the literature
date from the late 1980s. One of these is the Phoenix project [5], a
real-time adaptive planner that manages forest fires in a simulated en-
vironment (Yellowstone National Park, USA). This system consists
of an autonomous agent architecture integrating multiple planning
methods, with the agents organised hierarchically so as to improve
fire-fighting performance by adapting to the environment.

Other intelligent systems with forest fire applications have been
developed [14], but to our knowledge, none of these predict forest
fire risk. In more recent years, other projects have been developed
for specific European regions. One of these, FOMFIS (Forest Fire
Management and Fire Prevention System), is an international project,
partly funded by the European Union. This is designed to obtain the
most cost-effective strategy for both preventing and fighting forest
fires. Operating offline, it provides information on the likely outcome
in terms of fire-fighting costs and damage. It also provides a measure
of apparent fire risk in a given area on the basis of weather conditions.
A prototype of this system is currently been tested in three south-
ern European areas, namely, Galicia, Aquitaine (France) and Evia
Island (Greece). Another system is currently being developed by the
Joint Research Centre of the European Commission under its Natu-
ral Hazards Project [17]. Its forest fire programme consists of three
areas: fire risk evaluation, fire detection, and mapping of burnt areas
and damage assessment. Fire risk indexes based on linear regression
models are used to predict the fire hazard for an entire province [18].

Finally, other forest fire hazard indexes have been developed and
applied [4], but their preventative capacity is reduced when they are
used to predict fires outside the area for which they have been devel-
oped, as was demonstrated in [6]. For this reason, a new fire forest



index applicable to Galicia has been developed, which we describe
below.

3 PROBLEM DESCRIPTION

Our forest fire index has been developed for Galicia, a region in the
north-west of Spain similar in size to Belgium or Massachusetts.
Its surface area of 29,575 km2 was divided into 360 fire location
squares, each measuring 10 x 10 km (see Figure 1). For each new fire,
therefore, the UTM (Universal Transverse Mercator) coordinates for
the square in which it occurs are known but not its exact location.

Figure 1. Galicia divided into 360 squares. The dots represent
meteorological stations

The purpose of the system is to calculate a risk fire index for each
square, which will subsequently be classified in terms of one of four
symbolic categories (low, medium, high and extreme risk) in order to
facilitate interpretation by the user. These categories will be graphi-
cally represented on the map of Galicia using a colour code to repre-
sent the categories. Since forest fire outbreaks and subsequent devel-
opment depend to a large degree on meteorological and climatic fac-
tors [19], meteorological data is always included in forest fire predic-
tion methods. In our particular case, these data were obtained from
five Galician meteorological stations (represented as dots in Figure 1)
and corresponded to the square where the station is located. The me-
teorological data for the remaining squares were extrapolated from
the nearest station, taking into account features such as altitude or
distance from the station.

4 DESCRIPTION OF THE TRAINING/TEST
DATA

In order to build the train/test data set, available meteorological data
for the years 1988 to 1999 were used. Specifically, for each square
i and each dayj, the following variables were selected, based on
multiple correlation analysis [7]:

• Maximum Temperature for the day in question measured in centi-
grade degrees (Tmax(i, j)).

• Humidity percentage for the day in question (H(i, j)).
• Number of days with rainfall of less than 3 mm up to the present

day (R(i, j)).
• Number of fires in this square (F (i, j)).

The train/test data set was built on the basis of these variables us-
ing Tmax(i, j), Tmax(i, j − 1), Tmax(i, j − 2), H(i, j), R(i, j) as
well as the mean number of fires in the previous three yearsm(i, j)
calculated usingF (i, j). The data set available was composed of
1,577,880 instances. However, only around 5% of the samples repre-
sented positives cases, i.e., a square with a detected fire. Therefore,
to ensure a balanced train/test data set, all the positive cases were se-
lected for each year and an equal number of negative examples were
chosen uniformly from among all the squares and randomly from
within each square. The final train and test sets consisted, respec-
tively, of 125,156 and 13,906 samples.

5 NEURAL NETWORK MODELS

For this research, the selected approach to resolving the fire risk pre-
diction problem was based on neural networks. The non-parametric
ability of neural networks to model any non-linear function [13] and
to establish non-linear boundaries among decision regions is well
documented. Neural networks also represent a practical method for
dealing with highly complex classification problems [3, 11]. Further-
more, neural networks have been demonstrated to be tolerant of in-
put noise, a particularly important criteria for this research, where
both, real and extrapolated data will be used. Moreover, data preci-
sion will vary depending on the period in which these were recorded
on the database. The model used for this research was a multilayer
perceptron [3] (see Figure 2). In this kind of network, neurons are
organised inM sequential layers and each neuron in themth layer
is connected to all the neurons in them + 1th layer. The strength of
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Figure 2. Multilayer perpectron

these connections is determined by a set of parameters called weights
(W(m); m = 1, . . . , M ). The output of each neuroni at layerm is
calculated asy(m)

i = f
(m)
i (

∑Nm−1
j=0

w
(m)
ij y

(m−1)
j ), whereNm−1 is

the number of neurons in layerm−1 andf
(m)
i is the non-linear trans-

fer function of the neuron. In this case, a sigmoidal transfer function
for the neurons was used, defined asf(x) = 1/(1−exp−x) ∈ [0, 1].
In order to resolve a problem, the network parameters (i.e., the
weights) are adapted by means of a supervised training process,
where for each inputx a desired outputd is supplied. For this re-
search, the system was trained using the Levenberg-Marquardt algo-
rithm [10] and the mean squared error (MSE) as the minimising cost
function, where MSE is defined asE[(d− y)T (d− y)]. This algo-
rithm was chosen because it is one of the most efficient methods for
training moderate-sized neural networks. The weights are updated
using the following equation:W(n + 1) = W(n) + (H+ µI)−1g,
whereH is the Gauss-Newton approximation of the Hessian weights



matrix, µ is the step size andg is the error function gradient. Fur-
thermore, in order to improve the learning process performance the
desired output was offset byε = 0.05 from the limits of the trans-
fer function in the output layer [11]. Several topologies were trained
using the Network Growing strategy [11], which begins with a very
simple network to which new elements, hidden neurons and layers
are added to the point where performance is improved no further. The
results described in [9, 12, 15] were employed, which state the mini-
mum (Hmin) and maximum (Hmax) number of hidden units needed
in the network asHmin > n andHmax <= 2n + 1, wheren is the
number of inputs. Therefore, several network topologies with 7 to 13
hidden units were trained. Each network was trained several times,
using a different set of initial weights, in order to increase the proba-
bility of obtaining an optimal solution. Once the error was stable the
training process terminated.

6 RESULTS

In order to characterise the performance of the system the following
measures [20] were used:

• Accuracy (A) = (TP+TN)/(TP+FN+FP+TN)
• Sensitivity (S) = TP/(TP+FN)
• Specificity (Sp) = TN/(FP+TN)
• Positive Predicted Value (PPV) = TP/(TP+FP)
• Negative Predicted Value (NPV) = TN/(FN+TN)
• False Positive Ratio (FPR) = FP/(FP+TN)
• False Negative Ratio (FNR) = FN/(TP+FN)

whereTP, TN, FP, FN represent the number of true positives, true
negatives, false positives and false negatives, respectively. All the
topologies described in the previous section were trained using the
125,156 training data and validated using the 13,906 test samples.
Of these, the 6-9-1 topology (6 input, 9 hidden and 1 output neurons)
achieved the best performance.

Figure 3 contains the ROC (Receiver Operating Characteristic)
curve [1] for the test data. This curve was constructed by varying the
detection threshold from 0.05 to 0.95. Using this curve, and follow-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Sp

S

Figure 3. ROC curve for the test data

ing the recommendations of experts in the field regarding the max-
imum false positive rate allowed (around 23.3% and represented by

the broken line in Figure 3), the final detection threshold was fixed
as 0.5. The network was also applied to all the available data (the
years 1988 to 1999). Figure 4 depicts the ROC curve for these data.
Similarly to the test data, this curve was constructed by varying the
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Figure 4. ROC curve for the data for 1988-1999

detection threshold from 0.05 to 0.95.
Table 1 shows the contingency matrix obtained for these data. The

values of the performance measures areSensitivity= 0.857,Speci-
ficity = 0.768,PPV = 0.146,NPV = 0.991,FPR = 0.232,FNR =
0.143 andAccuracy= 0.772.

Real classification
Fire ¬Fire

System Fire 59588 349184
classification ¬Fire 9943 1159165

Table 1. Contingency matrix

Subsequently, in order to check the variability of the system’s per-
formance this study was carried on a year-by-year basis. Figure 5
shows the ROC curves for each of the years in question. As can be ob-
served, the sensitivity obtained for the fixed threshold (broken line)
varies from 0.757 (years 1989 and 1992) to 0.915 (years 1996 and
1997).

As was previously mentioned, the threshold used to determine fire
detection wasγ = 0.5; in other words, if the network output is less
thanγ then the corresponding square is categorised as being a low
risk area. If an area is rated as constituting a serious fire hazard, the
risk level (medium, high and extreme) is fixed using a further two
thresholds that proportionally divide the interval[0.5, 1] into three
sub-intervals. On the basis of these thresholds, the set of positive
cases detected by the system in Table 1 was broken down as is shown
in Table 2.

7 DISCUSSION

As was illustrated in the previous section the highest performance
indexes achieved by the neural network were the sensitivity and the



Real classification
Fire ¬Fire

Extreme 28496 65902
System High 21887 145324

classification Medium 9205 137958
Low 9943 1159165

Table 2. Contingency matrix considering the four risk levels

NPV measurements. This means that overall the system’s capacity
for detecting a fire was quite satisfactory, and that it almost invari-
ably predicted a negative classification for cases when no fire was
recorded. On the other hand, the specificity value - and particularly
the PPV - indicate that the false positive rate is high (evident also in
Table 1). This is partly explained by the following:

• The detection threshold was fixed on the basis of expert criteria
so as to minimise the risk of failing to predict a fire which in fact
occurs, for the simple reason that the cost of this error is higher
than that incurred by a false prediction of a fire.

• The system was designed to evaluate whether meteorological con-
ditions favour an outbreak of fire. However, the fact that meteoro-
logical conditions are favourable is no guarantee of a fire.

It is interesting to note, in Table 2, the correlation between the risk
level for each positive category (medium, high and extreme) and the
number of true positives classified for that category.
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Figure 5. ROC curves for each year (1988-1999)

In reference to the ROC curves, the test curve and the curve for the
years 1988 to 1999 are similar. As was to be expected, this indicates
that the train and test data sets were adequately designed to take ad-
vantage of the generalisation capacity of the neural network. In addi-
tion, the ROC curves in Figure 5 are useful in identifying those years
when performance was significantly better or poorer. This informa-
tion will be useful for a future analysis that will focus on improving
our system by identifying new relevant input variables.

In order to verify whether there were meaningful differences be-
tween systems developed using extrapolated and real data, the se-
lected network topology was also trained using only the latter, i.e.,

the information obtained from the five meteorological stations. The
results obtained were similar to those obtained when employing ex-
trapolate data.

A further experiment was carried out which consisted of training
five different networks, one for each meteorological station. The aim
was to determine whether this approach would produce a better per-
formance than our global network, and in fact, there was no improve-
ment in results.

Also interesting would have been a comparison with other fire risk
prediction systems, such as those described in Background above, but
this was not possible since comparable results are not available.

The neural model described in this paper is included within a
larger system for real-time prediction and management of fires. The
latter includes a geographical information system, an expert system
for the management of fire-fighting and post-fire terrain recovery re-
sources, and a module for the automatic acquisition of meteorologi-
cal data. One of the features of this system is that it graphically illus-
trates the fire risk predictions of the described neural network (Figure
6). Each square is assigned a colour code representing the risk level
and is also marked with the number of fires that genuinely occurred
in the area represented by that square. By clicking on a square, more-
over, the user can call up detailed maps of the area and other infor-
mation such as type of vegetation or the population of villages and
towns.

The costs and complications involved in fire-fighting during the
worst periods of the year make it impractical to maintain active fire-
fighting units in all areas of the country. A spatial analysis of fire risk
is, therefore, an extremely useful tool since it permits fire-fighting
units to focus on those areas where there is a higher probability of
damage.

Figure 6. System prediction for Galicia, 20 August 1998. The level of risk
is indicated by a colour code and the number in each square represents the

number of recorded fires



8 CONCLUSIONS AND FUTURE WORK

Our paper describes an intelligent system for forest fire risk predic-
tion. The proposed system is based on a neural network and uses
meteorological data to assess fire risk probabilities. Our system ob-
tained acceptable results over real data, bearing in mind that a sig-
nificant number of fires are deliberately provoked, representing an
intrinsic level of error that cannot be reduced. In addition, the me-
teorological data provided to the network, are not sufficient in order
to be able to make an accurate prediction. Other information which
would be relevant to this problem includes socio-economic and ter-
rain factors (e.g., existence of a road, type of vegetation, etc). These
factors, which play an important role in fire outbreaks, are more ap-
propriately managed using symbolic techniques, and an expert sys-
tem is currently been developed to take account of this additional
knowledge. This expert system will eventually be integrated within
the neural network described above, and will modify the calculation
of the risk index so as to improve the performance of the system.
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Dı́ez, ‘Incendios forestales: Modelo predictivo’,Investigacíon y Cien-
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