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Abstract. This paper presents a systematic methodology for 
building causal models that can be used for fault detection and 
isolation. The aim of a causal model is to capture the influences 
between the variables of a continuous process and to generate 
qualitative and quantitative knowledge that is interpreted by a 
diagnostic module. Following a model-based approach for fault 
detection, the diagnostic module compares the predicted outputs of 
the causal model with the measured values. Each influence of the 
causal model is associated with component(s) of the process. This 
qualitative knowledge is used to isolate the source fault on a set of 
components of the process. The application to a fluid catalytic 
cracking process pilot plant is briefly described and a fault scenario 
is finally presented. The work is done in the context of the EU-
funded CHEM project "Advanced decision support system for 
Chemical/Petrochemical manufacturing processes". 

1 INTRODUCTION 
Continuous process supervision is mainly performed by operators. 
In the event of an undesired or non-permitted process state they 
have to rapidly identify the fault that creates this state and to take 
appropriate decisions in order to maintain the operation or to avoid 
damage. Generally, the source fault, isolated on the faulty 
component, propagates among influenced variables with specific 
dynamics. Due to the increasing size and complexity of modern 
processes, understanding the propagation of faults becomes more 
difficult [7]. 

Let us define known process variables as measured variables or 
those variables provided by the control system. Up to now, known 
variables are automatically compared with fixed thresholds in order 
to detect faults via a crisp decision. The conclusion whether the 
variable is normal or abnormal is made independently from the 
values of other known variables. 

This paper describes a system that can detect and isolate the 
source fault on a set of components of the process, knowing a 
normal, quantitative but uncertain behaviour of the process. 

A diagnostic methodology is defined, following three successive 
steps; the first step is an a priori study allowing to build a 
quantitative dynamic causal model of the normal behaviour of the 
continuous process; the second step relies on two fault detection 
strategies that can be applied on line using the causal model; the 
last step isolates the source fault on some components of the 
process using the results of the previous steps. Section 2 presents 
the industrial context of this work. 

The interest of using causality between phenomena for process 
supervision is explained in [11, 12]. Several solutions have been 
proposed for causal modelling, for instance deriving causality from 
a set of equations [8], [13] or from a physical analysis of the 
process [9], [6]. Section 3 proposes a way to obtain a causal model 
combining both approaches. 

A widespread solution for fault detection and isolation is to use a 
numerical model-based method. Numerical models quantifying the 
normal behaviour of the process generate predicted values for 
known variables. They can be compared with those acquired on the 
process. Section 4 presents different strategies for this purpose. 

The sets of abnormally behaving and normally behaving known 
process variables are thus identified. The causal model contains 
structural knowledge about the process: each of its arcs is 
associated to a set of components. This knowledge is interpreted to 
isolate the source fault on a component [4]. Section 5 provides 
such an isolation methodology. 

The whole system (causal model, detection module and isolation 
module) is called "diagnostic module" in this paper. Finally section 
6 presents an industrial application to a FCC (Fluid Catalytic 
Cracking) pilot plant 

2 THE CHEM PROJECT 
CHEM is the acronym for the EU-funded project "Advanced 
decision support system for Chemical/Petrochemical 
manufacturing processes". The objective of CHEM is to develop an 
advanced decision support system for process monitoring, data 
analysis and interpretation, event detection and diagnosis, and 
operation support in chemical and petrochemical manufacturing. 

The decision support system will consist of an integrated set of 
software tools that will provide robust detection and diagnosis of 
process faults in real-time. The system will assist operators in 
assessing process status and responding to abnormal events, 
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thereby enabling processing plants to maintain operational integrity 
and to improve product quality at reduced cost. The project will to 
provide a flexible architecture and a methodology in order to 
facilitate the development of such applications on many processes. 

The CHEM consortium is composed of fifteen industrials and 
academics from eight European countries. The industrial end-users 
provide different kinds of processes ranging from FCC (Fluid 
Catalytic Cracking) to a paper making process, a gaseification pilot 
plant, a steam generator, a benzole recovery plant and a CIM 
(computer integrated manufacturing) process, on which techniques 
provided by the academic partners will be tested. This paper 
focuses on one specific toolbox and is therefore only representative 
of a subset of CHEM. 

3 CAUSAL MODELLING 
A way to diagnose a complex process is to use a causal reasoning 

approach. The variables of the process have to be analysed in terms 
of cause-and-effect relationships. A causal model describes 
qualitatively influences between process variables. A causal model 
is represented by a directed graph composed of nodes and arcs. 
Nodes represent (known or unknown) process variables and arcs 
represent influences. For instance the causal influence of a variable 
x on a variable y is qualitatively described by the graph in figure 1. 

When an influence is described by a quantitative relation with 
uncertainty, the resulting model is called causal uncertain model in 
the following (CUM). 

 
Figure 1.  Causal graph between x and y 

 
Variables can be sensor or actuator values, set points, or 

disturbances. Initially a set V of variables and a set R of 
relationships between variables are known. Some intermediate 
operations are necessary to obtain the final CUM used for fault 
detection and isolation. Two approaches are proposed in this paper 
to build this causal uncertain model. One is based on a systematic 
representation of the components of the physical system, including 
a systematic representation of control loops. It results in an expert 
causal model. The other approach, based on deep knowledge about 
the physical system, results in a deep causal model. The CUM can 
thus be qualified as expert or deep depending on the approach. 
 

 
Figure 2.  Causal model building methodology 

3.1 Causal model structure 
The first step consists in defining the physical system. It can 

either be the whole process or a part of it, depending on the 
diagnostic objectives. 

The second step consists in dividing the physical system into a 
set of components. The granularity chosen to represent the physical 
system (i.e. the number of components) depends again on the 
objective of the diagnosis. If a component model contains many 
measured variables relevant for the diagnosis then this component 
may be divided into sub-components (a valve can either be 
represented as a whole or by exhibiting its mechanical and its 
hydraulic subsystems). 

The third step consists in identifying the configurations of the 
physical system. A given configuration provides one causal model. 
A configuration of the physical system corresponds to a working 
mode assignment to each component. Indeed, some components of 
the physical system can show different working modes. For 
instance a valve that can be open or closed has two working modes. 
The set of variables used to describe the physical system can 
depend on the working mode of each component.  

The fourth step consists in choosing the approach (expert or 
deep). If first principle knowledge about the physical system is 
available and is relevant for diagnosis, then the deep approach can 
be chosen. As knowledge concerning the control system of the 
process is always available (i.e. set points, controlled variable and 
controller parameters), the expert approach can always be chosen. 
The choice (expert or deep) may be different for different parts of 
the physical system. 

The fifth step consists in defining the set V of variables 
representing the behavioural phenomena of interest, i.e. those 
relevant for diagnosis. Precisely defining this set of variables 
avoids overloading the causal structural model.  

The sixth step consists in identifying relationships between the 
variables of the set V. If the expert approach is chosen then V is 
essentially made of the controlled variables and their disturbances, 
hence a systematic representation of the control loops can be used 
[6]. For instance, in a single control loop the setpoint and the 
disturbances both influence the regulated variable and the 
manipulated variable (Figure 3). 
 

 
Figure 3.  Single control loop 

 
If the deep approach is chosen, then the relationships take the 

form of formal equations, for instance mass balances or energy 
balances. 

The seventh step consists in associating each relationship with a 
set of components of the physical system. A component of the 
physical system is associated with a relationship if and only if this 
relationship determines its (or part of its) behaviour. At this point, 
the expert approach has completed the causal model structure. 

For the deep approach an eighth step is necessary, which consists 
in applying a standard causal ordering method [8], [13]. To apply 
this algorithm, every differential equation must first be brought 
back to a set of differential equations in canonical form. 



In [13], the main assertion made is : “every differential equation 
in canonical form (dVi/dt)=rj(V1,...,Vp) can be interpreted as a 
mechanism which determines the value of the derivative dVi/dt as 
a function of the variables which appear in the right-hand side of 
the equation” i.e. the derivative is the direct consequence of the 
variables which appear in the right-hand side; in other words 
variable Vi is associated with relationship rj. Let R’ be the subset of 
R of differential equations in canonical form and let V’ be the 
subset of V of variables that appear in a derivative form. Then the 
causality between the variables of set V’ and the relations of set R’ 
can be easily determined using the previous assertion. Then the 
causality has to be determined between the variables of the set 
V/V’ using the static relations of the set R/R’. 

The causal ordering can be performed within a graph theoretic 
framework. The bipartite graph G=(V/V’ ∪ R/R’, A) is defined, 
where A is the set of arcs such that an arc exists between Vi ∈ V/V’ 
and rj ∈ R/R’ if and only if Vi is involved in rj. Then the causal 
ordering arises from determining a perfect matching in G. An 
exogenous variable has no cause variable in the causal graph. 

At this stage, the system is represented by a set R of oriented 
relationships between the set V of variables. Each relationship is 
associated with a set of components, and this determines a causal 
model structure for the physical system. 

To produce the final causal uncertain model, two operations can 
be performed on the causal model structure, so called reduction and 
approximation. 

3.2 Causal model reduction 
The causal model structure involves a set of influences to be 

associated to propagation functions. In many practical situations, 
the parameters of the propagation functions are not known and 
need to be estimated with standard data processing methods[10]. 
However, this is possible if and only if the cause and effect 
variables of the influences are known variables. Since the causal 
model structure involves known as well as unknown variables of 
the physical system, the aim of the reduction operation is to 
transform the causal model structure so that it involves known 
variables only. As proposed in [14], this operation is made using 
the reduction algorithm.  

An influence I(Vi,Vj) of Vi ∈ V on Vj ∈ V is identified by the 
relation between Vi and Vj r(Vi,Vj), the associated components 
C(Vi,Vj), and the existence of this influence E(Vi,Vj), such that 
I(Vi,Vj)=[r(Vi,Vj),C(Vi,Vj),E(Vi,Vj)]. If E(Vi,Vj) exists then 
E(Vi,Vj) = 1 else E(Vi,Vj) = 0. 

The reduction algorithm is applied to each endogenous unknown 
variable Yj. 
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 The following algorithm is needed if there exists an endogenous 
unknown variable acting on its antecedents. 
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3.3 Causal model approximation 
The causal model obtained after reduction may contain 

relationships that are difficult to estimate, or negligible with 
respect to others, considering the diagnostic objectives. The 
approximation operation is based on the following: given a known 
variable Yi and the set of its direct causes C, if a group of influence 
contributions from a subset of variables C\c appear to be negligible 
with respect to the other influence contributions, then these 
influences can be discarded. However the information K that the 
variables of the subset C\c influence Yi has to be memorised to 
provide a correct diagnosis. This is illustrated by figure 5 where 
Yi=Y1, C =(V1,V2,V3), c=(V1,V2) and K=(V3,C3).  

This algorithm is not automated but applied manually by the 
expert to each variable Yj of the reduced causal model. 
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Figure 5.  Approximation algorithm 

 



3.4 Influence identification 
The model can be quantitatively informed using the values of the 

physical parameters of the relationships provided by the system 
design manuals, by fundamental knowledge or by parameter 
estimation techniques. Whatever the method, the parameter values 
are evidently uncertain. 

4 INFLUENCE ISOLATION 
Each CUM endogenous variable Y and the set of its direct causes 
can be interpreted as a quantitative local model where Y is the 
single output and the causes are the inputs. In the influence 
isolation module, each local model inputs are supplied with their 
measurements and the local model output is compared with its 
measurement. The detection module makes a consistency test 
based on each local model to decide whether the measured output 
is normal or abnormal, and thus to decide whether the components 
associated with the relationship are in normal or faulty mode. 
A drawback of numerical model-based diagnosis is due to 
uncertainties in the model and in the measurements. Uncertainties 
can be taken into account for generating model outputs with 
interval models. The output of such a model is an envelope, which 
characterises all the possible output trajectories. At a given time 
point, the whole system state is hence determined by a 
parallelotope, [1], [2], [3]. 
Another strategy consists in generating residuals using a classical 
numerical model. This approach requires choosing a threshold for 
residual evaluation. Fuzzy reasoning is a relevant tool to avoid this 
choice. The crisp threshold is replaced by residual fuzzification 
followed by fuzzy decision making. This allows managing 
uncertainty of the model and vagueness of concepts such as 
normal/abnormal [5, 12]. 

5 COMPONENT ISOLATION 
The influence isolation module detects discrepancies between 

predictions and observations. Then, the component isolation 
module aims at isolating the source fault on a set of components of 
the physical system. The component isolation module provides a 
list of possible diagnoses. 

The isolation module computes diagnoses from the conflict sets. 
A conflict set is a set of components such that the observations 
indicate that at least one of its component must behave abnormally. 
Given a misbehaving variable, the set of physical components 
associated with the arcs directly influencing this variable determine 
a conflict set. 

(Minimal) diagnoses can be generated from (minimal) conflicts 
using a hitting sets algorithm [4]. A diagnosis is hence a set of 
components such that its intersection with all the conflict sets is not 
empty. 

In this paper, the assumption is made that a fault always 
manifests itself. Thus, the components associated with the arcs 
directly influencing a non-misbehaving variable are considered to 
be normal. They can be removed from the diagnostic sets. 

6 APPLICATION TO A FCC PILOT PLANT 
The above described methodology was applied to a FCC pilot 

plant. A Fluid Catalytic Cracking unit is a refinery process which 
receives multiple feeds from several other refinery process units, 
consisting of high boiling point components. The FCC cracks these 
streams into lighter components. The catalyst circulates in closed 
loop, so the isolation of the primary fault is often very difficult. 
The FCC pilot plant, which is about 15 meters high, is 
representative of industrial FCC processes.  

The expert approach and deep approach have been applied and 
tested on this pilot plant. A diagnostic module based on a deep 
CUM, a fuzzy reasoning based influence isolation module and the 
component isolation module is currently tested online. The system 
is implemented with the real time software G2 from Gensym. G2 
employs object oriented methodology and has the capability to 
perform real time reasoning. 

The pilot plant was divided into 23 physical components. The 
structural causal model contains 323 variables (including 90 known 
variables) and 606 relations. The reduction and approximation 
operations were applied to this SCM to finally obtain a CUM made 
of 42 known variables including 30 endogenous variables. The 
implemented ACM is shown in figure 6. 

 

 
Figure 6.  G2 implemented causal uncertain graph 



The diagnostic module, currently applied online, has been tested 
on 11 real scenarios corresponding to 11 different faulty 
components. 

The scenario presented in the following corresponds to a blocked 
valve C1. The blockage of C1 modifies the influence of a regulated 
variable PC on a pressure P, a pressure drop DP and a flow F. 
Other components C2, C3 are respectively associated with 
influences on P and on F. Figure 7 illustrates this part of the CUM. 

 
Figure 7.  Part of the CUM 

 
Since the behaviour of C1 is abnormal, the predicted value of P is 

different from its measured value. Figure 8 illustrates the evolution 
of variable P during the scenario. 
 

Figure 8.  Evolution of variable P 
 

C1 is also associated with an influence on variable F, so the 
expected behaviour of F is different from its measured value. This 
is illustrated by figure 9. 
Finally, using the diagnostic module, suspected components are 
C1,C2 and C3. 
The operator is presented with an interface containing the identity 
of all suspected components. 
 

 
Figure 9.  Evolution of variable F 

7 CONCLUSION 
This paper presents a diagnostic methodology which has been 
applied to real-world data from a quite complex refining process 
and proved to be reliable with various scenarios. Its online use has 

helped pilot plant operators to detect faults early. It is generic 
enough to be applied to other types of processes and will therefore 
constitute a core element of the CHEM toolboxes. It needs, as all 
model-based diagnostic methods, a significant modelling effort and 
further model validation. 
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