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Abstract. Sailing represents a new area of research within the
field of applied AI. This paper gives a global overview of an ongo-
ing broad-scoped research programme, called the RoboSail project
(www.robosail.com). Part of this project is the realization of a semi-
autonomous intelligent pilot and a decision support system, assisting
sailors in optimizing sailboat performance. The project encompasses
a wide range of various real-world AI problems. In solving these
problems, we argue that our approach tosymbol groundingby means
of using jargon amounts to a significant reduction in the problem’s
complexity. The first implementation of this system has been suc-
cessfully tested by some of the leading sport teams in the world of
short-handed sailing.

1 INTRODUCTION

The RoboSail Project[16] is an new initiative to take the latest de-
velopments in the fields of Artificial Intelligence to the high seas.

The task of sailing consists of a whole range of components: first
of all the physical aspects of wind, water and waves. On a more
global scale, weather systems tend to continuously change, from a
complete calm up to a gale attaining to hurricane force. Next to the
reactive aspect of handling the rudder is the tactical notion of navi-
gation. Usually, these tasks are handled by a complete crew; in sin-
gle handed sailing, however, everything on board has to be done by
only one skipper. Thus endurance, fatigue and loss of concentration
become very important aspects of sailing. When there are so many
different tasks to be carried out, the amount of actual steering can be
as small as 15% to 20% [1]. Therefore, the benefits of having a bet-
ter (i.e. more intelligent) autopilot are obvious. Research to improve
autopilot systems is of utmost importance for sailing’s professional
teams.

The RoboSail Project’s ultimate goal is to create a semi-
autonomous, intelligent, computer system, which can learn to steer
a sailboat optimally, in close cooperation with the human sailor on-
board. We consider there to be no point, and no challenge, in trying
to create a fully autonomous sailing robot: international law and the
ORC4 rules prohibit the use of completely autonomous vessels. The
first would deem a robotized sailing vessel illegal, the latter would
make it practically useless in official races5.

The sport of sailing is not a trivial matter: [1, 5, 8] testify to this
sufficiently. It is an activity that consists of a large number of inter-
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esting problems: it contains senso-motoric elements as well as ele-
ments of high-level reasoning. The actual steering of a sailboat can
be viewed as a purely senso-motoric issue, while navigational as-
pects require a higher level, more cognitive approach. In between
these two extremes are activities liketrimmingthe sails6. The reason
why sailing is widely regarded as ‘difficult’ is due to the nature of
the world in which it takes place: a sailing vessel resides in a com-
plex, dynamical environment, governed by aërodynamics and hydro-
dynamics, two mathematically intractable problems [5]. The best ap-
proximations are so-called Velocity Prediction Programs [11], based
on various forms of finite-element analysis. Therefore, at best, only
partial mathematical models can be used. The best way to capture
the full dynamics of the world is thus tolearn from experiences. For

Figure 1. TheSyllogicsailing lab

these and other reasons [19], it has been argued that sailing is an in-
teresting sport from the perspective of applied AI: the combination of
different skills is a major challenge to the AI community. Apart from
the mechanical aspects, which represent an important issue onboard
any ocean racing vessel, the scope of all the different aspects involved
in sail racing are totally unlike any paradigm currently used in ap-
plied AI. Moreover, the focus of the RoboSail project is not ‘just’ on
creating a completely autonomous system, but a semi-autonomous
one that actively cooperates with its human ‘colleague’, to ultimately
combine the best of both: the physical qualities of the human, com-

6 Sailtrim: the choice of sails and the way they are configured



bined with the decision-making and accurate control capabilities of
an intelligent computer system. To achieve this, not only decision-
making should be implemented, but also a carefully designed system
of two-way communication: the computer as sparring partner, or co-
skipper.

The system described in this paper has been implemented and
tested on our sailing lab, theSyllogic(Figure 1).

2 ARCHITECTURE

The starting point of the design of the X-Pilot is theMission State-
ment:

“The X-Pilot should be able to navigate a sailing vessel through
a real-world sailing environment; it should do so autonomously
though in collaboration with a human sailor, in an optimal, re-
liable and robust manner.”

From this statement, we encounter a series of problems, some of
which are classic AI problems. The first comes from the senso-
motoric part of the problem: how can we map ‘human feeling’ unto
an algorithm? Secondly, in a complex, dynamical environment like
that of sailing, how can we obtain and use expert knowledge? If the
world of sailing is so complex and highly unpredictable, can we even
hope to find ways in which efficient learning is possible at all?

The first approach considered was one inspired by that taken in
[13] and similar research: we tried to learn a complete model by
means of Reinforcement Learning. First experiments however, re-
sulted in a very slow rate of convergence, and a quick calculation
showed us a sailing vessel would need several trips around the world
to gather enough information to learn to sail efficiently.

As soon as we added common knowledge to the system, the rate
of convergence would increase. For example, the concepts of ‘left’
and ‘right’ increased the rate of convergence for the rudder control
unit by a factor of100. Therefore, by increasing the knowledge, both
common and specific for sailing, it is argued that the hopes of effi-
ciently learning the task of sailing can indeed be upheld: we propose
to use the domain language, orjargon, as a base for identification
of the important regions within the problem space. From this, the
following conjecture is stated [19]:

“Autonomous systems operating in complex, dynamical envi-
ronments should be based on expert-rules, whose atomic ele-
ments are grounded using both symbolic and behavioristic ap-
proaches. These two fundamentally different concepts should
be brought together using hybrid software architectures.”

It was hypothesized that jargon can be used to this end, because this
subset of human language has evolved to express certain dynamics
and events typical to the domain. If this world is a complex and dy-
namic one, then this evolved set of words will indicate certain phase
transitions, ie. events that mark boundaries between certain stable re-
gions, in which efficient learning techniques are most likely to be
feasible.

In conjugation with this observation regarding jargon, we have the
notion ofgranularity. Choosing the right granularity is of paramount
importance, since certain events can only be measured at certain lev-
els of granularity. Looking at the right place in the wrong way means
missing some or maybe all potentially useful information. Jargon re-
duces the problem’s complexity by providing rough boundary’s on
the problem space, so search and/or learning algorithms can explore
smaller search spaces.

The challenge thus lies in bringing together high and low levels
of reasoning, each at their appropriate level of granularity. This hy-
bridization should be achieved by using behavioristic techniques for
the low-level areas, and rule-based reasoning for the highest level.
In between these two extremes, we encounter the traditional problem
of symbol grounding. The approach taken in this paper is to ground
elements of sailing jargon, following a methodology described by
Harnad [9]. We thus employ an approach combining techniques with
rule-based reasoning, set in an architecture based onagent technol-
ogy.
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Figure 2. Command Hierarchy and Agent Pool Architecture

An architecture based on these ideas has thus been designed. It
is shown in figure 2 and is based on a merge of the subsumption
architecture by Brooks [3] and the Xavier-architecture by Simmons
[15], combined with agent technology, in the form of anagent pool.
Within this pool, each agent instantiates one or more concept from
sailing jargon.

Let us view an example. One of the expert rules extracted from
multiple sailing experts is the following:

“If you are sailing close-hauled and there is a gust of wind then
steer the boat a bit windward.”

This rule can then be interpreted and enriched to the following script,
which is stated in more explicit terms:

“If the apparent wind angleφ is betweenφa andφb and the
apparent wind speed averageα is aroundαq andα increases
by a factor off for more thent seconds then steer the shipξ
degrees windward.”

Within the RoboSail architecture, each of the separate ideas con-
tained in the script,agentshave been created. This idea has been
inspired by the research of Minsky [12], who argued for the interpre-
tation of the human brain as a collection of cooperative agents.

For example, there is an agent which identifies if the ship is indeed
sailingclose hauled7. There is also an agent which judges if there is
a gust or not. These beliefs are then used in the rule-based reasoning
component.

7 Close hauled means the ship is sailing close to the wind, i.e. sailing against
the wind at an angle of about 45 degrees true wind.



3 IMPLEMENTATION

3.1 Hardware

A practical implementation of the X-Pilot system starts with the de-
sign and implementation of hardware. The hardware involved is built
on the Controller Area Network, or CAN bus [7], the de-facto stan-
dard in automotive applications. The CAN bus provides an extremely
reliable and robust medium for data transport. As depicted in figure
3, the four main components of the RoboSail net are:

• Intelligent Rudder Control Unit (iRCU)
• Motion Sensor Unit (iMSU)
• General Processing Unit (GPU)
• Display & Control Units (DCU’s)

The iRCU is RoboSail’s advanced 75 Ampère pilot drive unit, mak-
ing it the most powerful rudder drive unit in existence. It has been
developed in close cooperation with NIKHEF8. The iMSU contains
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Figure 3. RoboSail’s CAN-based network architecture

sensors to measure the motions of the ship in all 6 Degrees Of Free-
dom (DOF), as well as a high-speed and extremely accurate self-
calibrating compass. The interface to the rest of the world is the
GPU, which interfaces to an external computer and/or the Internet
through HTTP, and also receives and interprets legacy data from ex-
ternal sources, like GPS9 information and the like. Finally, the DCU’s
have been developed to allow the human sailor to easily interface
with the system, even in the harshest conditions. All hardware has
been designed to be extremely robust: operating temperatures range
from−40oC to +85oC, and all equipment has been stored in fully
watertight cases.

3.2 Software

Figure 4 sketches the structure of the implementational architecture
of the RoboSail X-Pilot. The first layer in the architecture is theSail-
ing Development Kit, or SDK: an extensive API that includes various
bi-directional interfacing software, error correction and data filtering
algorithms. It also contains an extensive library of Machine Learning
and data enhancement algorithms. The SDK also provides the event-
based data infrastructure for the entire system. On top of the SDK,
two layers ofsensorsandvirtual sensorshave been defined. Sensors
are the software representation of the hardware sensors mounted on
and in the ship, corrected for transmission and consistency errors.

8 Dutch National Institute for Nuclear and High-Energy Physics
9 Global Positioning System
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Figure 4. Implementational Architecture

Virtual sensors compute new data from information from multiple
sensors. A virtual sensor can be implemented by any sensor fusion
approach, although we use, among others, linear Kalman Filters,n-
dimensional Extended Kalman Filters [10] (forn ≥ 2) and an in-
stance of an Covariance Intersection Filter [18].

The next layer is the symbol grounding layer. It consists of a num-
ber of agents, each of which is responsible for grounding one or more
related concepts from sailing jargon. For example, there are separate
agents which hold beliefs about wind force and wind direction, about
the state of the sail trim, etc. Together, they form acontextof higher-
level concepts, that can be used by other agents to aid in reasoning
about the state of the world, the ship and the actions undertaken by
the X-Pilot. This information can then be used for more reasoning,
or serve as feedback for a performance measure.

Separate from thisagent poolis thecommand hierarchy, the com-
plex of four agents that are ultimately responsible for the system’s
actions. TheHelmsman, ultimately responsible for the control of the
rudder, is based on a PID controller, equipped with an adaptive vari-
ant of Ziegler-Nichols open-loop tuning [20].

The Watchmanhas the ability to advise the Helmsman to tem-
porarily adjust its course. The Watchman contains a rule base, with
rules stated in terms of agent beliefs. Therefore, the Watchman can
reason in the same terms as a human can, provided enough elements
of the language have been grounded. For example, the script given in
section 2, translates to Watchman pseudo-code as:

IF
WindAgent.WindMode = CLOSEHAULED

AND
GustAgent.Gust = TRUE

THEN
Helmsman.Luff(GustValue)

END IF

The last variable ‘GustValue’ is either based on expert knowledge,
or can be iteratively learned by the agent responsible; in this case the
Navigator agent. When the state of the world changes (for example,
the boat accelerates) some agents detect this change (e.g. the boat
startsplaning) and advise the Helmsman to alter it’s way of steering.
Also, the human skipper can be advised to watch or retrim the sails.

Other important components of the system are:

• Advisor



• WaveRider
• Polars
• Database and Data Explorer
• ModelBuilder

The Advisor is an important part of the decision support system: it
employs an expert knowledge-enriched k-Nearest Neighbor (kNN)
algorithm to advise the sailor on differences between the current
sailtrim and those that have been experienced by the X-Pilot in the
past. This information is used to inform the human skipper of the
current state of and changes in performance.

TheWaveRideris an implementation of a Linear Predictive Cod-
ing (LPC) algorithm from the area of time-series analysis [6]. Like in
several speech recognition systems, it predicts waves on the basis of
past measurements and estimates their relative height and direction.
This information is used to take advantage of the potential speed-
increasing surfing effect that can arise from steering off of waves.

ThePolars learn a dynamical model of the boats characteristics in
different wind speeds, wind angles and wave patterns. These can be
used to advise sailor, sail maker and boat designer on possible flaws
in the boats performance.

All information in the system is continuously being stored in a
database, which can be analyzed both on- and offline in theData
Explorer. Here, a collection of clustering algorithms, support vector
machines and association rule learners can distil the data into new
sailing knowledge. For testing and development purposes, we en-

Figure 5. ModelBuilder visual programming environment

hanced the SDK with theModel Builder, a real-time, dynamic visual
programming system in which all parameters and data flows of the
program can be displayed and changed. This addition might seem
trivial, but when testing in severe conditions, any alteration which
has to be done in code can effectively terminate a testing session.

4 TESTS & RESULTS

The first installment of the complete X-Pilot on theSyllogic Sailing
LabOpen40 was done in parallel to existing autopilot systems, which
enabled us to compare results.

After calibration of the X-Pilot, the first tests showed us that it
could handle basic steering behavior. However, after enabling the
higher level reasoning it showed some clear advantages over the other

autopilot systems. Due to the encoded sailing knowledge in the rule
base, it could actively and intelligently cope with situations in which
the other pilots would fail: typically, those pilots persistently follow
a straight line, relative to magnetic compass or wind angle, whereas
the X-Pilot can choose to deviate from this.

Data analysis after the firsts tests showed that the lower level phys-
ical layer which handled rudder control, had a more efficient power
consumption and a higher boat performance compared to the other
pilot systems. Besides the numerical comparisons, from expert hu-
man sailors we also received numerous statements that the X-Pilot
sails better, smoother and more intelligently.

The decision support system was tested in an endurance test which
would take the Syllogic Sailing Lab over the Atlantic Ocean in an ac-
tual sail race. The continuous feedback on boat performance and sail
trim advice between the X-Pilot and the skipper alerted the skipper
whenever the boat performance dropped, thus enabling him to keep
the boat fine tuned and always sailing at an averaged performance
of 85%. During long sailing trips, a human skipper normally identi-
fies possible sail trim improvements when performance has dropped
below 75%, with the decision support system, the human skipper is
alerted as soon as performance drops below 85%.

The decision support system is currently deployed on thedjuice
dragons10, a fully crewed V60 sailboat which competes in theVolvo
Ocean Race 2001/200211. The decision support system helped the
team to select and adjust the sail wardrobe before the race. During the
race, it continuously advises the (human) navigator and helmsman on
trim improvements and sail wardrobe changes.

The complete X-Pilot system has also been applied on theKing-
fisher Open6012. A successful Atlantic Ocean crossing showed good
results in endurance and applicability of the X-Pilot on larger and
more powerful vessels. In the competition season of 2002, the King-
fisher Open60 will compete in a number of Grand Prix races.

Figure 6. The Kingfisher Open60

5 CONCLUSIONS

We have presented an overview of the current state of work of the Ro-
boSail Project, an initiative aimed at developing and building a semi-
autonomous autopilot for sailing vessels and improving the level
of understanding of applying Artificial Intelligent in real environ-
ments. This area of research focuses upon the seamless integration
of state-of-the-art intelligent autonomous systems and their human
colleagues.

10 See http://www.djuice.com/dragons.
11 See http://www.volvooceanrace.org
12 See http://www.kingfisherchallenges.com.



The RoboSail X-Pilot is an adaptive intelligent system, rooted
in solidly designed hardware, based on a Controller Area Network
(CAN). We have sketched a novel architecture, based on those by
Brooks and Simmons, but enriched with anagent pool, performing
the task of grounding raw sensor data to symbolic domain language.

For the integration between the physical, senso-motoric reality and
the rule based reasoning aspects to work, a special subset of natural
language, in the form of jargon, has been used as a bridge. Through
this jargon, the complete problem domain is divided into smaller do-
mains, designated by different terms from the jargon. This results in
a significant decrease in problem complexity.

To support such a jargon based system, an agent pool was cre-
ated in which a number of agents reside, each of which is concerned
with one specific element of operation, one term of the jargon. Since
each agent is a little autonomous system in itself, it can for itself
determine the optimal grain-size of operation, be it in its design or
through learning algorithms. Since the landscape of the problem is
high-dimensional and chaotic, this potential diversity is necessary.

Furthermore, the argument holds the other way around: jargon
also implies a measure for optimal granularity. Through this argu-
ment, the creation of an agent pool determines the correct granularity
of each sub-domain, thus described terms function as glue between
high-level reasoning and the physical aspects of the real world.

The system described here has been successfully tested on our own
racing yacht, as well as by some of the leading teams in short-handed
sailing. Results have been positive and encouraging: the X-Pilot is a
more complete, reliable and better performing pilot system than any
other currently available.

6 FUTURE WORK

We are currently developing the third version of the X-Pilot, which
also enables intelligent control on multihulls. The factor of balance
on a multihull is far more important compared to a monohull and, due
to the much higher boat speeds, shorter reaction times are needed.
When combined with the higher risks of sailing a multihull13, it is
clear this seriously complicates research and development.

One of the most promising aspects of performance gain is not yet
covered by the X-Pilot: that of a high level navigation aid. A human
skipper collects meteorological and nautical data from a whole range
of sources and determines the best strategy to reach a certain goal. To
extend the current autopilot with these kinds of information streams
will further increase the optimization process of sailing.

Another promising aspect is that of reinforcement learning in high
dimensional continuous domains, such as Q-Learning as stated in
[17].

In cooperation with Perot Systems Netherlands, a project has been
launched to analyze data gathered by the X-Pilot by use of advanced
data-mining technology [14].

With the University of Utrecht, work in the area of real-time visual
sailshape recognition by means of geometrical pattern recognition
techniques has just finished [4].

Also currently underway is a project to apply new theory in the
area of vector-based time-series analysis [2], as developed at Delft
University of Technology, to multi-dimensional wave prediction.

Finally, with the Intelligent Autonomous Systems Group at the
University of Amsterdam, the use of Machine Learning techniques
for learning high-level behavior is under research, for use in both
RoboSocceras well as RoboSail.

13 A 60 foot multihull will probably not survive capsizing at a speed of over
20 knots.

The future also holds a series of two-boat tests with the aim of
objectively and accurately determining the success achieved by the
X-Pilot. Also, for this season, training the pilot by means of super-
vised learning has been planned.
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