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Abstract. A causal diagnosis solution relying on experts’ knowl-
edge concentrates on the different malfunctions that may disturb the
data acquisition process and tells the engine test bench tuning en-
gineer which malfunction has occurred or which malfunctions are
most likely suspected. The use of fuzzy sets and possibility theory
provides better feedback and knowledge representation. The gen-
eral architecture of the system is described, and an application of
the fault-diagnosis part of this system is presented. It concerns the
implementation of an (off-line) automatic knowledge formalization
system and the implementation of the (on-line) possibilistic causal
diagnosis process.

1 INTRODUCTION

This paper presents the implementation of an industrial on-line fault
detection and identification system. Other on-line or real-time indus-
trial diagnosis systems have been developed in the recent years, e.g.
[3] (taking account experts’ knowledge in a crisp way), [8] (using
fuzzy sets but only for observations/data modeling) and [7] (using
fuzzy sets for experts’ knowledge representation, in If-observation-
Then-fault rules). An originality of our system is the qualitative han-
dling of uncertainty both for observations and causal knowledge.
This is the result of a long term research and development project,
which aims at improving the calibration of car engine ECUs (ECU:
Electronic Control Unit), on engine dyno test benches, by detecting
malfunctions when they occur. This project is named BEST, standing
for Bench Expert System Tool. Here, the implementation process of
BEST only is presented. See [5] for more details on the general ap-
proach to diagnosis developed for BEST.

The engine dyno context, the needs and expected benefits (regard-
ing diagnosis expert system BEST) are explained below (Section 2).
Section 3 gives BEST’s general architecture and concentrates on the
fault-diagnosis part, which is implemented and tested on a case study.
Section 4 summarizes the representation framework of the knowl-
edge on malfunctions (faults) and the automatic formalization system
developed in order to collect knowledge and use it very fast in the di-
agnosis process. Section 5 outlines the fuzzy set-based approach first
introduced in [6] and implemented. Finally, some perspectives are
given in conclusion.
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2 THE ENGINE DYNO

In one century, diesel and gasoline cars have gone from the carbu-
retor to the electronic injection (ECU-controlled). More and more
complex strategies have been implemented to answer to increasing
constraints (pollutant regulations, vehicle behavior, new engine con-
figuration: direct injection, diesel common rail, variable valve tim-
ing, electric controlled throttle...) involving an increasing number
of variables which must be taken into account.

For each new engine or new version, the control strategy param-
eters have to be calibrated in order to fit the requirements. This is
done through a large amount of testing and tuning. These tests can
be done on the engine dyno bench, on the chassis dyno or directly on
vehicles. During all these processes, data acquisitions are made, and
then used in order to define calibrations.

2.1 The calibration process

Figure 2.1 shows the calibration process on an engine dyno. The cal-
ibration of the ECU is performed thanks to a calibration tool. Basi-
cally, the ECU gets measurements from engine sensors (e.g., mass air
flow, engine speed ...), computes other intermediate variables and
finally tells the engine which amount of fuel should be injected and
what the spark advance should be. The data used for the calibration
process are recorded by the calibration tool. They are provided by
engine sensors and ECU but also by the engine dyno sensors, as well
as additionnal devices. That is the System. In the following, System
stands for the engine, the engine dyno, all sensor sets and additional
devices.
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Figure1l. The calibration process

2.2 Data acquisition

Before doing any acquisition, the global conformity of the system
has to be checked. It must be in accordance with the specification



and the methodology. This global check includes physical verifica-
tion (sensors, fuel consumption measurements, gas analysis. .. ), but
also system configuration (i.e. inhibited system functions). As sen-
sors become more numerous and the strategies more complex, this
global check requires more time and so the tuning engineer has less
time for the testing itself and its methodology. The result of this situ-
ation is that test duration is increasing, and the reliability is degraded.

Then, while performing the tests, an on-line verification must be
done to guarantee the acquisition validity. Again the tuning engineer
can check the validity of measurements manually while running. He
checks single-parameter raw thresholds, coherence of some param-
eters with standard values, as well as coherence between several
parameters. He also compares mesurements with those of previous
tests. Nevertheless, today it is nearly impossible for the engineers to
ensure the global coherence on-line (real time). Most of the time,
when there is a problem, it is discovered during post processing data
treatment. Quite often the test has to be performed again.

This paper describes the need for a(n expert) system, which takes
into accountall of these issues linked with global system conformity.

2.3 Needs and expected benefits

Today, 10 to 20% of the manual tests must be reworked due to bad
acquisitions or software configurations. Malfunctions are generally
due to dyno bench environmental problems (gaz analysis, fuel bal-
ance...). So wrong acquisitions should be detected right away and
the malfunction that occurred should be identified as soon as possi-
ble in order to correct it quickly and make sound acquisitions again.
Some common and simple malfunctions are already easily identi-
fied by engineers. Yet others require time-consumming searches for
their origin and symptoms when they occur. Indeed, engineers can-
not keep in mind all the information and past experiences. Moreover
they cannot watch in real time all the (numerous) measured channels.
In order to cope with such checkings, an expert system, BEST, has
been designed. BEST has to perform global coherence checking, in
the same way as for manual tests. It should be able to detect and iden-
tify malfunctions as soon as they appear: That is on-line detection.

3 GENERAL STRUCTURE

BEST represents a huge amount of work and investment. It gathers
several functionalities divided into different modules for step by step
development and validation. This Section presents the general archi-
tecture of BEST and the parts which have been developed. Some
of the ideas underlying this architecture can be found in other ap-
proaches to industrial diagnosis (e.g., [2]).

3.1 Project’s architecture

Figure 3.1 presents the different modules:

o FORM, which enables the experts to formalize their knowledge,
using fuzzy rules.

e ESO, which Extracts, Sorts and Organizes the rules w.r.t.
bench/engine environment specificities.

e Al, which is the Artificial Intelligence part performing the diag-
nosis by using the extracted rules and the measurements made on
the engine.

Each module, contains the 3 following submodules: OK (diag-
nosis based on models of normal behaviour), KO (diagnosis based
on models of malfunctions) and MASTER (the supervision rules).
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Figure 2. The architecture of BEST

In the Al module, OK and KO diagnosis are aggregated in DIAG.
BEST_AI_OK tells which models of normal behaviour are not
reached and BEST_AI_KO tells which malfunctions have been iden-
tified. The use of two different diagnosis is safer in regard to incom-
pleteness and possible inconsistency of some models. Besides, both
diagnosis (OK and KO) can give some feedback explaining why a
model of normal behaviour was not reached and why a malfunction
was selected. They may also ask for other specific measurements in
order to improve their diagnosis. Finally, MASTER decides wheather
the test may continue, should use another computation for some vari-
ables, or should stop. The decision is taken according to the supervi-
sion rules, the specificity of the test (listing the variables involved in
the test), the two diagnosis (pointing at the faulty source variables)
and a dependency graph (providing the faulty induced variables).

3.2 Implementation

The whole KO part of the BEST project has been developed on a
case study. The result is a demonstrative application which can detect
and identify malfunctions as soon as they appear on engine dyno test
benches. Recording and formalizing the available knowledge was
thus a key step of this project and a preliminary standard form had
been defined to describe the malfunctions [1].

The entire application was developed under Windows NT in Vi-
sual C++ with MFC library for the user interface model. It imple-
ments the document/view architecture using MDI (Multiple Docu-
ment Interface) template: the application can have two or more docu-
ments open for editing at once. Moreover, the database was designed
under Access and was used through the DAO (Data Access Objects)
application programming interface.

The solution implemented is based on the generation from a
knowledge database of a fuzzy rule file consistent with test speci-
ficities and environment. This file is then used by another tool to per-
form the diagnosis on engine dyno computers. So, this work is made



of two standalone applications: one for off-line formalization and se-
lection of knowledge (Section 4) and the other for on-line diagnosis
(Section 5).

4 OFF-LINE TOOL

The main interface is made of two parts:

e A FORM part which concerns the database management, and con-
sists of a workspace with a search engine (Section 4.1).

e An ESO part which concerns the files management. By default,
the workspace shows a list of all malfunctions already created in
database, each one is detailed as a tree of symptoms (Section 4.2).

4.1 FORM part

First of all, it is a tool for the enlargement of the knowledge database
to obtain more consistent rules. The user has to populate database
with engine experts’ knowledge about the malfunctions and their ef-
fects. It is generally a laborious and repetitive work. For each mal-
function identified, the following three tasks have to be done:

1. Give the malfunction definition: the user has to enter a unique def-
inition with four characteristics: a group, a type, an identification
and the nature of default (some choices are proposed for each).

2. Give the malfunction structure: according to the algorithm, the
user has to describe the malfunction with symptoms built with
two level connections (AND/OR logical operators with may be a
confidence assessment).

3. Give the symptom details with four elements: an attribute defi-
nition (mathematical function for the observed anomaly), a pos-
sibility level (expressing to what extent it is likely to observe the
attribute within a defined range), some conditions (operations hav-
ing an influence on the way the attribute can appear), and an envi-
ronment (bench and engine specificities).

It is important to notice that a symptom is described for a specific
environment. So, a malfunction can have the same symptom several
times just because of different environments.

4.2 ESO part

The purpose of ESO is to Extract, Sort and Organize the rules
depending on the environment of the engine dyno test bench. In
our application, ESO is implemented as a functionality of the
BEST_FORM_KO module.

It consists of files that are used to give knowledge to the Al core
which performs the malfunctions diagnosis by itself. When a new
ESO file is created, the user has to parameter its environment. Only
malfunctions of the workspace having compatible symptoms with
this environment are automatically added into the file (through a se-
rialization mechanism, for efficiency). For the incoherent symptoms,
the user can choose to modify their environment in order to make
them compatible or to remove them. The generated files can of course
be read and modified with the tool).

5 ON-LINE TOOL

This section describes the basis of the methodology on which re-
lies the diagnosis process of the application. It first defines some
notations (Section 5.1) for the malfunctions, attributes, causal fuzzy
rules (formalized knowledge) and observations (also possibly fuzzy).
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Figure3. Main screen

Then, the diagnosis is based on the idea of consistency (Section 5.2)
and finally it is refined with abduction (Section 5.3). A toy example
is carried out at each step. A more realistic example can be found in
[4]. An implementation of this diagnosis process is then presented
(Section 5.4).

5.1 Notations

Let M be the set of all (known) possible malfunctions and .A be the
set of the n observable attributes: {X1, ---, X,}. Let m € M
andi € {1, ---, n}, then z, denotes the possibility distribution
[9], giving the (more or less) plausible values for attribute X'; when
malfunction m (alone) is present. Let U; be the domain of X, so
xi, Ui — [0, 1]. &' will be the fuzzy set corresponding to
possibility distribution «%,. It represents what is known about the
effects of malfunction y on attribute X;. K isalso called effect, or
symptom, of m on X;.

For instance, let M = {m1, m2, ms}, X1 = T (the inlet temper-
ature) and X, = P (the exhaust gas back pressure). Table 1 summa-
rizes the knowledge concerning the effects of these 3 malfunctions
on those two attributes:

e m; gives a high inlet temperature and a positive exhaust gas back
pressure.

e m gives a high inlet temperature and a negative exhaust gas back
pressure.

e m; (has no effect on inlet temperature and) gives a negative ex-
haust gas back pressure.

The observations may also be imprecise (or uncertain). po,
U; — [0, 1] is the possibility distribution, which gives the (more or
less) plausible values for the observed value of attribute X;. O; de-
notes the fuzzy set corresponding to possibility distribution pe,. It
expresses the imprecision (or uncertainty) of the observations (com-
ing from sensors). In other words, it represents the possible actual
values for attribute X;.

In the toy example, the imprecisions of the observations are repre-
sented with crisp sets (Table 2).

k' and O; both express imprecision, when they contain more
than one element. Yet, they give information of two highly different

types:

e imprecision for O; can be “controlled” (at least in principle):
Changing the sensors would give more precise (but may be more
expensive) or less precise observations.

e imprecision on K¢, on the contrary, cannot be reduced (or
changed) that easily: It depends on the available knowledge about
the Systemonly.



Table1. Fuzzy causal knowledge

Malfunction Inlet Temperature Exhaust Gas Back Pressure
H H
1 1
m
oo 0
50 300 Tee 100 Pea
M H
1 1
m
2 0 . 0 5
50 300 c -100 Pa
M H
1 1
m
3 0 0
Tec Ppa

-100

Note that when attribute X; is not yet observed, its value is not
known, and it could be any value of U;: Yu € U;, po,;(u) = 1.
Similarly, when malfunction m has no known effect on attribute X,
all values are allowed: Yu € U, wh, (u) = 1.

In fact, for the knowledge representation, the experts are very of-
ten more comfortable in expressing their confidence in some values
they consider highly possible or, on the contrary, totaly impossible.
So, for continuous attributes, the experts only need to tell what they
know best (values of possibility 0 and 1) and =%, is then computed to
follow the given information and to be continuous and piecewise lin-
ear (see Table 1). For discrete attributes, we can have different levels
of possibility (e.g., from O to 1 by step of 0.1 units).

5.2 A consistency-based index

A consistency-based index has been defined: ticons M —
[0, 1], which enables to discard observation-inconsistent malfunc-
tions (tcons (m) close to 0).

The possibility distribution attached to O; ﬂlC;n is defined by:
u — min(po, (u), 74 (u)) and tells how much the observations
and the knowledge on malfunction m are consistent. The elements
of highest possibility in this intersection give the consistency degree
between O; and ' : sup, ¢, min(po, (u), 7 (u)). The consis-
tency degree for any malfunction m with the observations is then
given according to those of ©; and K, (for each attribute):

Heons(m) = mi{l sup min(po, (u), 7, (u)). 1)
=1 ueU;

So the toy example leads to Table 2.

Here, m is discarded by pcon < as the measured exhaust gas back
pressure is incompatible with the presence of m. Yet, m2 and ms
are both absolutely consistent with the observations. Should one of
them be a better explanation of the observed symptoms?

In case of too incomplete knowledge, pcons Might not be
sufficient in order to select a small enough number of malfunctions.
So, a second index is required in order to refine pcons and bring a
better conclusion: find, among the undiscarded malfunctions, which
one is most relevant to the observations.

5.3 An abduction-based index

A malfunction is more relevant to the observations when its effects
have been observed for sure. That is: O; C K, (for crisp sets). In

Table2. Using the consistency index

Malfunction Inlet Temperature Exhaust Gas Back Pressure

n—
n—

50 300 £ -100 .
Heons Heons
) - = 1
m
3o 0
T C -100 PPa

order to single out most relevant malfunctions, fuzzy inclusion of O;
in & has to be defined.

Inclusion can be defined by implication (for crisp sets, A C B
is equivalentto Vz,z € A = z € B). So, several fuzzy implica-
tions (—) have been checked for this purpose. Thus a second index
is defined to evaluate the relevance of a malfunction:

trel(m) = Itn_l{l igguol(u) = m(u). 2
The worst implication degree tells the extent to which the malfunc-
tion is relevant to the observations. So p,.; selects the most relevant
malfunctions (ur.; close to 1).

Dienes’ strong implication (¢ —p & = max(1 — a, b)) was
chosen because it is the most dicriminating and it keeps the following
natural crisp property: if O; C k', then O; (\K'# 0 . That is:
Hecons Z Hrel.

This index has abductive caracteristics as it selects m from the
knowledge of the effects of m and the observation of the effects of
m.
The toy example then leads to Table 3 in order to classify equally-
consistent malfunctions (here m, and ms). So ms is the best expla-

Table3. Using abduction

Malfunction Inlet Temperature Exhaust Gas Back Pressure

Hrel Hrel
1 — 1
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m 0.47|
2 - 0 o
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1 0.
m
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nation, as it has the highest confidence level concerning the presence
of its symptoms (0.83 vs. 0.47 for ms).

Note that the use of u,.; is linked to the fact that observations
are imprecise (indeed, pirei = pcons iN Case of precise observa-
tions). Yet, a totally precise observation is feasible only for discrete
attributes. In case of continuous attributes (e.g., temperature, pres-
sure), the observations given by sensors always have an imprecision



(even if it can be made very small with high precision sensors).

As a conclusion, the diagnosis is first based on gicons in order to
discard and rank the malfunctions and then on u,.; in case of twin
first malfunctions (as in the toy example). See [5] for a more com-
plete discussion on the use of fuzzy sets in this diagnosis process and
the extension to multiple-fault diagnosis (not yet implemented).

5.4 Implementation

The first prototype developed [1] has been adapted to interface with
the off-line formalisation tool through the new ESO files format (a
deserialization mechanism extracts all the causal fuzzy rules into
memory). It has no impact on the Al core algorithm which has only
minor changes. Some improvements have been implemented to make
the application more useful. There are now two modes:

1. An efficient diagnosis mode, which consists of a small icon sitting
in the system tray of Windows NT taskbar. While performing on
engine dyno test, the application becomes active and works with-
out human intervention. When an event occurs, i.e. detection of
the possible presence of a malfunction, a popup window is auto-
matically opened and gives some information and advice on mal-
functions and symptoms involved in the problem.

2. A degrade debug mode, which displays a bargraphs window and a
console window where each event (attribute calculus, intermediate
results, false alarms, ...) is logged and can be saved on a text file.

5.5 Experiments — Validation

The diagnosis application runs directly on the engine dyno test
benches. Experiments have been conducted on-line on the benchesin
order to validate the method and the application. These experiments
have been made on a representative case study involving 35 possible
malfunctions which can take place in 20 different environments. The
experiments consisted, for instance, in disconnecting sensors (e.g.
temperature or pressure sensors), air leakage simulations, inversion
of two sensors. . . Figure 4 gives an example of an output provided to
the tuning engineer when there is a leakage on the Mass Air Pressure
(MAP) sensor. The evolution in time of Cons (ucons), Per (French
for uye) indices, and their sum is available for each noticeable mal-
function which may take place. Figure 4 exhibit only two of them
for the sake of space (the first one — global exhaust gas temperature
sensor out of order — is absent, the second — MAP leakage at the air
inlet — has been detected as present).
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Figure4. MAP leakage

The results of these experiments are very positive as all mal-
functions have been detected and identified on-line. Very little false
alarms occurred: only for temperature sensors during transition
phases. This was due to a lack of information in the knowledge base.

Now, the knowledge base is being fed with more information in
order to detect more malfunctions, and this for all states of the engine.

6 CONCLUSION

This project has led to the development of an advanced diagnosis
tool based on an enhanced representation of expert knowledge. It
gives a complete base for the diagnosis, from the computer-assisted
recording and formalization of information on malfunctions to the
detection of their presence.

The diagnosis application (based on a first prototype, which has
been improved by developing tools for elicitate the expert knowledge
[FORM], and visualise the result of the diagnosis module) shows
the efficiency of the fuzzy causal diagnosis methodology on the case
study. The approach appears to be well suited for the qualitative han-
dling of uncertainty. Further improvements should enable the detec-
tion of multiple malfunctions and “cascading” malfunctions [5], in
connection with the formalization tool.

The formalization tool, which has been more recently imple-
mented, enables one to define (single) malfunctions and symptoms,
using convenient windows and a subset of the human natural lan-
guage (subset of English). The diagnosis application can then use this
knowledge, directly from the database. Yet, some necessary func-
tionalities should be implemented in the future in order to reach an
industrialization process: administrative tasks (user’s rights on data,
validation procedure), network capabilities to allow concurrent ac-
cess to the database, and rollback on the database.

Moreover, the OK part is under study. The goal is to develop
a complete application for BEST, including the master supervision
rules.

Finally, this complete tool will be industrialized and commercial-
ized by D2T.
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