Graph partitioning techniques for Markov
Decision Processes decomposition

E0022

Abstract. Recently, several authors have proposed serial de-
composition techniques for solving approximately or exactly
large Markov Decision Processes. Many of these techniques
rely on a clever partitioning of the state space in roughly inde-
pendent parts. The different parts only communicate through
relatively few communicating states. The efficiency of these
decomposition methods clearly depends on the size of the set
of communicating states : the smaller, the better. However,
the task of finding such a decomposition with few communi-
cating states is often (if not always) left to the user. In this
paper, we present automated decomposition techniques for
MDPs. These techniques are based on methods which have
been developed for graph partitioning problems.

1 INTRODUCTION

Markov Decision Processes (MDPs) have become a stan-
dard model for decision-theoretic planning. However, tra-
ditional dynamic programming solution methods (e.g. [15])
do not scale to the size of problems that can be com-
pactly represented by the factored representations tradi-
tionally used in AI Therefore several methods of abstrac-
tion/agregation/decomposition for large problems have been
proposed in the AI community (see [3] for an overview).

In this paper we focus on decomposition techniques, that
allow a more efficient solving by splitting the problem into
roughly independent subproblems, communicating through a
small set of communicating states. Several authors [6, 5, 12]
have proposed such techniques. They are based on Kernel
decomposition [10], that [6] adapted to MDP decomposition.
The authors were interested in, given a ” good” decomposition,
how to compute efficiently exact or approximate solutions to
the original MDP. What we propose in this paper are meth-
ods and algorithms for finding such a good decomposition.
Our work is in this respect complementary to theirs. To our
knowledge not much effort has been devoted to this task, yet.

In the next two sections we recall the MDP framework
and the Kernel decomposition technique for MDPs, as well as
the basic features of the MDP solving methods exploiting this
technique. Then in Section 4 we will expose the methods and
algorithms that we suggest for computing automatically these
decompositions. The methods are based on techniques which
have been developed in the scientific computing community,
for partitioning large graphs. These methods [8] are based
either on spectral decomposition [13] or on local search [9].

2 MARKOV DECISION PROCESSES

The standard MDP model [15] is defined by : i) A set of stages
(possibly infinite) in which decisions are taken. ii) For each
stage t, a finite state space, S:. iii) Sets As,: (finite) of avail-
able actions in state s at stage t. iv) Rewards r:(s,a, s’) that
are obtained after a has been applied in state s and resulted
in s’. v) Probability distributions p:(s,a,s’) describing the
uncertainty about the possible successor states (in Si+1) of
s € S¢ when a € A;; is applied. A policy § is an application
from Uy Sy to Uses, As,+ assigning an action to each possible
state of the world in stage ¢. In the infinite horizon case or
in the stationary finite horizon case, the parameter ¢ has no
influence on the decision problem, and thus, can be dropped.
Then, the MDP is fully determined by < S, A, p,r >. For ease
of exposition, we will restrict our study to stationary prob-
lems in this paper, but the techniques we propose could be
extended to non stationary problems without much difficulty.

A policy 4, applied in an initial state so, defines a Markov
chain that describes the sequence of states occupied by the
system. The discounted value of a policy in a given state is
the expected sum of the rewards gained along the possible
trajectories :

n
v(s0,8) = B(Y_ 7" +7(50,8(s4), 5041)) (1)
t=0
where 0 < v < 1 is the discounting factor and 0 < n < +o0
is the horizon.

Solving a MDP amounts to finding a policy * maximiz-
ing v(s,-),Vs. The dynamic programming methods are based
on the decomposition of the sequential decision problem into
one-stage decision problems, by making use of the Bellman’s
equations [1].

In the finite horizon case, an optimal policy for a MDP is
obtained as the solution of the following system of equations :

Vi(s) = max { Z p(s,a,8") - (r(s,a,s') +7v- VH'I(s'))}

a€As ¢
s'€Siy1
(2)
and V" F1(s) = 0,Vs.

Optimal policies can be computed by backwards induc-
tion, i.e. solving the above equations in decreasing order of
t. In the discounted infinite horizon case, optimal policies
(which, by the way, are stationary) can be obtained as fixed
points of equation 2, superscripts ¢,t + 1 being dropped.

Methods such as the value iteration algorithm [2] can be
used to compute optimal policies. This algorithm consists in,

starting from an arbitrary initial value function Vg, applying
iteratively the formula on the right-hand side of (2) to V, until
convergence is obtained (to V*). From the optimal value func-
tion V*, an optimal policy 6* can be obtained greedily'. Other
algorithms have been designed to solve infinite horizon MDPs,
such as policy iteration [15]. This algorithm operates on poli-
cies, by alternating Evaluation and Improvement phases. In
the Evaluation phase, policy 4 is fixed and iterations of the
right-hand side of (2) are performed until convergence to V;.
Once convergence is obtained, § is modified in the Improve-
ment phase: the new policy &’ is greedy with respect to V5.
The algorithm stops when no modification of the policy re-
sults from two successive Evaluation/Iteration phases. Mod-
ified policy iteration works as policy iteration but iterations
within the Evaluation phase are stopped before convergence.

3 DECOMPOSITION TECHNIQUES

In AI, planning problems can often be modeled as MDPs.
However, traditional dynamic programming algorithms re-
quire time polynomial in the size of the state and action spaces
ezplicitly enumerated. Unfortunately, these spaces are in gen-
eral too large to be enumerated, and are rather described com-
pactly in structured languages. This is the reason why much
effort in the Decision Theoretic Planning community has been
devoted to the search for feasible computational methods for
solving large (multidimensional) spaces MDPs. Namely, three
families can be inventored :

- The state aggregation methods group states in subsets
sharing the same features, thus reducing the size of the MDP
[7]. In the same family, actions are sometimes aggregated in
macro-actions [14].

- The decomposition methods [6, 12, 5] aim at decreasing
the complexity of the MDP by splitting the original prob-
lem into smaller subproblems solved independently. The ele-
mentary solutions are then combined in order to provide an
(approximately) optimal solution to the global problem.

- The multi-agent reinforcement learning methods [11]
combine RL [16] with multi-agent methods, used as a means
of decomposing the initial problem.

In this paper, we focus on decomposition methods, based
on a partial decoupling of the state space, initiated by [6] and
then improved by [5] and [12].

3.1 Star topologies of a MDP

Let < S, A,p,r > be a MDP. Decomposition methods consist
in taking advantage of a given partition II = {S;}i=1..n of
the state space S in order to solve the original MDP more
efficiently than in the direct way. The works of [6, 12, 5] use
a star topology of the state space based on a partition. This
decomposition relies on the two following definitions:

Definition 1 Periphery.
Per : II — 25 associates to each element S; of the partition its
periphery, defined as the states out of S; immediately reach-
able from S; by an action a € A.

Per(S;) = {s' ¢ Si,3(s,a) € Si x A,p(s,a,s') > 0}.

1 Through the formula §*(s) = argmaz, Zs,esp(s,a, s’y -
(r(s,a,8") +7-V*(s)))

Then, the star topology decomposition of S induced by
II is defined as:

Definition 2 Star topology decomposition II*.
" = {K;}i=1.n UU, is defined as :
U= Ui:1__nP6T(S7;) and K; = S;NU,Vi.

These definitions constitute a basis for the MDP solving
techniques that we briefly review in the next paragraph.

3.2 Solving a decomposed MDP

Exact methods for solving MDPs under star-topology form
are essentially iterative. Basically, the central component U of
the star topology is used in order to make the local processes
over the S; independent.

Definition 3 Local MDPs.
Let MDP =< S, A,p,r >. Let Il = {S;}i=1.n be a parti-
tion of the state space, and U = UPer(S;). Let X, a |U|-
dimensioned vector, be an estimate of the global value func-
tion V' on subspace U. Then for each subspace S; we define a
subproblem MDP; =< S; U Per(S;), A, p,; > where p; and
ri are such that :

-V(s,a) € S; x A,Vs' € S,pi(s,a,s") =p(s,a,s"), and
V(s,a) € Per(S;) x A,pi(s,a,s) =1,

-V(s,s',a) € 82 x A,ri(s,a,8') =7(s,a,s),
V(s,a,s') € S; x A x Per(S;),ri(s,a,s') = A(s'),
V(s,a,s') € Per(S;) x A x Si,ri(s,a,s'’) =0.

The following proposition holds (see e.g. [6]):

Proposition 1 If A(s) = V*(s),Vs € U (where V* is the
optimal value function for the global MDP), then the policy
7w = Unl. obtained by gluing together the solutions of the
component MDP:s is itself optimal.

Of course, since the optimal value function V* is what
we are trying to compute, it is of no use in order to initialize
A. So, the algorithms proposed in [6, 12, 5] are all iterative.
They initialize A\ arbitrarily (or heuristically), then solve the
MDP; and use the solutions in order to update .

In [6], it is proposed to use linear programming in or-
der to solve the component M DP}. [12] notes that just any
scheme alternating improvement of the local policies and of A
would lead to an optimal policy, as soon as no region starves
(such schemes are implementations of asynchronous dynamic
programming [2]). So, value iteration, policy iteration, even if
not led to full convergence, are allowed as local improvement
steps. [12] and [5] suggest to use the star topology in order to
transform the initial MDP into an abstract MDP which state
space is U, and actions are local policies (also called macro
actions) over the S;. The transition and reward functions of
the new MDP are derived in a coherent way from the ones of
the initial MDP.

An important thing to notice is that the methods pro-
posed by [6, 12, 5] are all the more efficient as the size of U, i.e.
the dimension of A is small and the S; are of balanced sizes.
However, to our knowledge, no algorithms have been proposed
in order to automate the construction of a “good” partition of
the state space. We propose such methods, inspired by works
on graph-partitioning, in the next section.

4 AUTOMATED STATE SPACE
DECOMPOSITION

As we mentioned in the previous section, the problem of find-
ing a good k-partition of the state space can be stated as:

Find a partition (Si,...,Sk), as balanced as possible,
such that the cardinal of U = Ule Per(S;) is minimum.

A similar kind of problem is encountered, concerning
graphs: the minimal cuts graph partitioning problem.

Definition 4 Minimal cuts graph partitioning problem.
Let G = (V,E) be a graph, where V is the set of vertices,
and E the set of edges. The problem is : Find a partition
(Vi,..., V&) of V, as balanced as possible, minimizing the size
of Cuts = {e = (v1,v2) € E, s.t.3i # j,v1 € Vj,v2 € V;}.

This problem is NP-complete even for bipartition (k =
2), but can be approximately solved through spectral theory
techniques. The solution obtained can then be locally refined,
in order to find the solution to the minimal cut bipartition
problem. When k-partition is concerned, recursive applica-
tions of spectral bipartition/refinement can be performed, al-
though spectral quadrisection/octasection are possible, to the
price of a higher computational cost [8].

Our proposition for finding a good state space biparti-
tion is to apply spectral bipartition to the underlying graph
of the MDP, and then to locally refine the partition in order
to minimize |U|. A k-partition can be obtained through suc-
cessive bipartitions. Let us now describe in details the steps
of the bipartitioning of a MDP :

- obtaining a symmetric graph from the MDP model,

- spectral bipartition of the graph or multilevel spectral
bipartition for large graphs,

- local refinement of the bipartition.

4.1 Symmetric graph of the MDP

Let < S, A,p,r > be a MDP. We define the symmetric graph
G= (V, E) of the MDP as follows.

Definition 5 Symmetric graph of a MDP.

G = (V, E) is the symmetric graph of MDP < S, A, p,r > iff
V=Sand E = {(s,5') € § x S/Ja € A,p(s,a,s") >0 or
p(s',a,s) > 0}.

In other words, s and s’ are adjacent in the graph iff there
is an action leading possibly from one state to the other.

4.2 Spectral bipartition
We define the Laplacian matriz of the graph as follows:

Definition 6 Laplacian Q of graph G = (V, E).
-Q(s,8)=—1V(s,8)€V? s#£5 and (s,5') € E,
-Q(s,8)=0V(s,8') €V?, s # 5 and (s,5') ¢ E,

- Q(S,S) = _(Zs;és’ Q(S,S’)),VS ev.

Q is of the form Q = D — A, where A is the adjacency matrix
of the graph. Let now II = (V4, V2) be a bipartition of V' and
X = (z;) be a vector of size |V|, such that z; = 1if s; € V4
and z; = —1 if s; € Vo. The number of cuts induced by the
partition (Vi, V2), 6(V1, V2) is equal to (see, e.g. [13]):

Proposition 2
1
§(V1,V2) = 2(X*QX).

As a consequence, the minimal cut bipartition problem can
be stated as:

Find [8min| = min 1(XfQX) (3)

aie{-11},| Y mil<e 4

where the constraint |) ;| < & which is equivalent to ||Vi|—
[V2|] <€ € is a constraint on the balance of the bipartition (if
€ = 0, the two subsets have the same number of vertices).

The problem (3) is NP-complete, but an approximate
solution can be obtained through the following steps :

1) Compute Z, the eigenvector of @ corresponding to the
smallest, strictly positive eigenvalue?.

2) Project Z on {—1,1}/S! while respecting the balance con-
straint.

There exist efficient algorithms that perform step 1) and
in our implementation we used the MATLAB built-in function
eigs that does it for large, sparse, symetric matrices. Step 2)
can be directly performed by setting to -1 the values of the
negative elements of Z and to +1 the others. This can be
slightly alterated if the result is not balanced.

4.3 Multilevel bipartition

Spectral bipartition is impractical for a graph of more than a
few hundreds of vertices, which severely limits this approach
for bisecting large MDP state spaces. [8] propose an improve-
ment of the algorithm, that allows to deal with large graphs.
This improvement is based on :

- A coarsening procedure which transforms a given
weighted graph into a smaller, coarse weighted graph,

- an adaptation of the spectral bisection algorithm which
enables it to deal with weighted graphs,

- an uncoarsening procedure, which generates a partition
of the fine graph, from the partition of the coarse graph.

Before going any further, let us introduce the follow-
ing notations : a weighted graph is now represented by G =
(V, E,wy,we) where V and E are the usual vertices and edges
sets. w, and w. are integer valued vectors of strictly positive
weights attached to the vertices and edges of the graph, re-
spectively. We define the weighted Laplacian and weight vector
of a weighted graph as :

Definition 7 Weighted Laplacian and weight vector.

Matriz Q is the weighted Laplacian of G = (V, E,wy,we) iff
Y(s,s") € V2 s # &, Q(s,8') = —we(s,s') and Q(s,s) =
D e zs We(s,). Similarly, a vertices weight vector W is de-
fined as W(s) = wy(s),Vs € V.

Let us then briefly describe the different steps of the
multilevel bisection algorithm:

Coarsening of a weighted graph. The first step
in the coarsening of a graph is to find a matching M of
the graph, that is a set of edges which have no vertices in
common. The following simple procedure allows to find such

2 Z is the solution to the minimization problem (3) without con-
straints.

a matching M, which is furthermore mazimal, in that no
matching M’ exists which strictly contains M? :

Maximal matching.
Let go through V, in a random but fixed order.
For each vertex v encountered:

- Remove v from V,

- if there exists v’ such that (v,v') € E, remove
v’ from V and add (v,v') to M,

- remove all edges containing v or v from E.

This procedure is linear in the size of V. Once the match-
ing M is obtained, we can construct the coarsened graph
(V', E',w,,w,). For each matching pair (v,v') € M, form
a new vertex v,,,r, of weight wy(vy,.) = wu(v) + wu(v').
If v and v’ are both adjacent to vertex v", wi(vy,,,v") =
we (v, v") + we(v',v").

The adjacency matrix and weight vector of the coarsened
graph can be obtained from the coarsening matrix M: M is
an m X n matrix, where n is the cardinal of V, and m is
the number of edges in M, plus the number of unmatched
vertices. Each line of M corresponds either : i) to an edge
in M, in which case the line has zeros everywhere, except on
the places corresponding to the vertices in the associated edge
where it has ones, ii) or to an unmatched vertex, in which case
it has zeros everywhere, except on the place corresponding to
the unmatched vertex.

If A and W are respectively the adjacency matrix and
Weight vector of the original graph, A’ = MAand W' = MW
are the adjacency matrix and weight vector of the coarsened
graph (V' E', w;,, w,). This coarsening procedure is exempli-
fied in Figure 1.

An important property of this coarsening procedure is
that the weighted number of cuts for a given partition of the
coarse graph is equal to the weighted number of cuts for the
corresponding partition of the fine graph. Furthermore, the
total weights of vertices in each part are equal in the coarse
and fine graphs.

100010 s1.2
5,2 M =/011000 3
000101
1 S,, 4
S, 2 L 2
s3,3
S 1
Figure 1. Coarsening of a graph.

Bisection of a weighted graph. Proposition 2 holds
also for weighted Laplacians associated to weighted graphs,
as shown in [8]. So, it is possible, exactly as in the unweighted
case, to find a partition of a weighted graph, through spec-
tral bisection, the balance constraint being replaced by a
constraint on the difference of the sum of the weights of the

3 Note that there may be several maximal matchings for a given
graph, not having the same cardinality. The procedure we de-
scribe is the simplest for finding maximal matchings but there is
no guarantee that it returns a matching with maximal cardinality.

vertices in the two parts of the bisection.

Uncoarsening of the coarse partition. Once the
original graph has been coarsened, and the spectral bisection
made, we are left with a partition of the coarse graph. This
partition can be transformed in a partition of the fine graph
in a direct way, by assigning the vertices of a matched pair to
the same part as their coarse counterpart. This simple trans-
formation ensures that the balance constraint is still fulfilled,
as the number of cuts. The uncoarsening step can be easily
expressed in matrix form. If X' € {—1,1}"™ represents a bi-
partition of the coarse graph, X =* M X' is the corresponding
partition of the fine graph.

4.4 Local refinement

In the multilevel spectral bipartition algorithm, several
sources of imprecision arise in the search for minimal U-size
bipartition:

- First, spectral bipartition aims at finding minimal edge-
cuts bipartition, which is different from minimal U-size bipar-
tition, although correlated.

- Second, when the NP-complete original problem is
replaced with eigenvector search another approximation is
made, since the search in a discrete space is replaced by a
search in a continuous space followed by a projection of the
result on the discrete space.

- Third, when a coarse partition is searched for, vertices
that have been matched together can not be split by the bi-
partition algorithm, even if they would be separated by an
optimal bipartition.

For these reasons, the result of a multilevel spectral
bipartition should only be seen as an approximate solution to
the minimal U-size bipartition problem, that deserves to be
locally refined. Let us describe a refinement scheme that is
inspired from the algorithm of [9], designed for the minimal
cut bipartition problem. Notice that this scheme is local and
may not lead to a global optimum.

Local refinement.
Bestpart < (Si,S2) ;
Besteval < |Per(Si)U Per(S2)| ;
Improve < true ;
While (Improve)
Perform a sequence of greedy improving swaps4
each vertex being swapped at most once ;
If the best partition encountered is better
than Bestpart and balanced then
Update Bestpart and Besteval
Else Improve + false ;
End ;

Finally, multilevel bipartition goes as follows :
- Construct the graph G = (V, E) of the MDP.
- Perform successive coarsening steps G;+1 = Coarsen(G;),
until |Vj| is below a given threshold.
- Perform weighted spectral bipartition on G;.
- Perform uncoarsening steps, interleaved with local refine-
ment steps if desired.

4 Swap(s),s € S1 is greedy improving iff it minimizes |Per(S1 —
{s'}) U Per(S2 U{s'})|.

4.5 Example

We have illustrated the approach on the navigation example
of Figure 2. The effect of actions are stochastic: when try-
ing to move to an adjacent square, the two squares that are
adjacent to the target (and diagonal to the source) may be
reached with probability 0.2 each. Here, we have applied three
successive multilevel bipartition steps, each followed by a local
refinement step. For multilevel bipartition, successive coars-
ening steps were performed, until the number of vertices of
the coarse graph was under 50. The balance constraint in the
spectral bipartition phase was that there should be at least
40 squares in each part. Figure 2 should be read from left to
right for the three bipartition steps, the results of the spectral
bipartitions being on top, the refined results on bottom.

20 20
15 15
10 10 H
5 H 5
5 10 15 20 5 10 15 20
20 20
15 15
10 an 10 HH
5 5
5 10 15 20 5 10 15 20 5 10 15 20
Figure 2. Successive bipartitions from left to right, up:

spectral bipartition, down: refined bipartition.

To give an indication on the usefulness of the obtained
decomposition, we applied an MDP decomposition method to
this problem, where a positive reward is obtained when the
state of coordinates (3, 3) is reached, a null reward everywhere
else and a discount factor of 0.9. In the case of the first bi-
partition, we compared direct application of value iteration®
with a simple method alterning improvement steps of local
policies (through the execution of a small number of policy
improvement steps) and updates of the A function on U.

The implementation was done in MATLAB on a PIII 600
biprocessor under Linux. Direct Value iteration took 46.14
secs, while spectral bipartition, local refinement and solving
of the decomposed MDP took respectively 3.17 secs, 2.37 secs,
and 20.27 sec. Different runs, leading to different bipartitions
(there is a random factor in the coarsening process) gave re-
sults quite similar, except for the local refinement process,
which execution time has a high variability.

5 CONCLUDING REMARKS

We have proposed algorithms for the automated decompo-
sition of state spaces of large MDPs. This work is comple-

5 Which goes faster than policy iteration on this example

mentary to previous works on MDP decomposition. We have
checked experimentally on a very restricted domain that the
cost induced by automated decomposition is more than com-
pensated by the gains obtained with decomposition-based
solving of MDPs. However, more effort should be devoted to
assess the efficiency of such methods.

Further developments of the methods we have proposed
should involve factored representations of MDPs [4]. Indeed,
large MDPs are especially encountered when structured repre-
sentations (logical, Bayes net...) are used. [4] use aggregation
methods for solving more efficiently factored MDPs. Auto-
mated decomposition methods such as the ones we propose
could be usefully integrated to enhance the performances of
the aggregation-based methods, by e.g. building graphs on ag-
gregated states in order to decompose the aggregated MDPs.

REFERENCES

[1] R.E. Bellman. Dynamic Programming. Princeton University
Press, Princeton, 1957.

[2] D. P. Bertsekas. Dynamic Programming: Deterministic and
Stochastic Models. Prentice-Hall, Englewood Cliffs, 1987.

[3] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic
planning: Structural assumptions and computational lever-
age. Journal of Artificial Intelligence Research, 11:1-94, 1999.

[4] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dy-
namic programming with factored representations. Artificial
Intelligence, 121:49-107, 2000.

[5] C. Boutilier, M. Hauskrecht, N. Meuleau, L.P. Kaelbling, and
T. Dean. Hierarchical solutions of markov decision processes
using macro-actions. In Proc. 14th conf. on Uncertainty in
Art. Int. (UAI’98), pages 220-229, Madison, WI, 1998.

[6] T.Dean and S.H. Lin. Decomposition techniques for planning
in stochastic domains. In Proc. IJCAI’95, pages 1121-1127,
Montreal, Canada, 1995.

[7] R. Dearden and C. Boutilier. Abstraction and approximate
decision theoretic planning. Art. Int., 89:219-283, 1997.

[8] B. Hendrickson and R. Leland. An improved spectral graph
partitioning algorithm for mapping parallel computations.
SIAM J. Stat. and Comput., 16:452-469, 1995.

[9] B. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, 29:291—
307, 1970.

[10] H.J. Kushner and C.H. Chen. Decomposition of systems gov-
erned by markov chains. IEEE transactions on Automatic
Control, 5(19):501-507, 1974.

[11] M.L. Littman. Value-function reinforcement learning in
markov games. J. of Cognitive Sys. Research, 2:55-66, 2001.

[12] R. Parr. Flexible decomposition algorithms for weakly cou-
pled markov decision processes. In Proc. UAI’98, pages 422—
430, Madison, WI, 1998.

[13] A. Pothen, H. Simon, and K. Liou. Partitioning sparse ma-
trices with eigenvectors of graphs. SIAM J. Matriz Analysis,
11:430-452, 1990.

[14] D. Precup, R. Sutton, and S. Singh. Theoretical results on
reinforcement learning with temporally abstract behaviors. In
Proc. ECML’98, pages 382-393, 1998.

[15] M.L. Puterman. Markov Decision Processes. Wiley and Sons,
New York, 1994.

[16] R. Sutton and A. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 1998.

