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Abstract. The problem of finding the best explanation for a set
of observations is studied within various disciplines of artificial in-
telligence. For a probabilistic network, finding the best explanation
amounts to finding a value assignment to all the variables in the net-
work that has highest posterior probability given the available obser-
vations. This problem is known as theMPA, or maximum probability
assignment,problem. In this paper, we establish the computational
complexity of the MPA problem and of various closely related prob-
lems. Among other results, we show that, while the MPA-p problem,
where an assignment with probability at leastp is to be found, is NP-
hard, its fixed-parameter variant is solvable in linear time.

1 INTRODUCTION

The problem of finding the best explanation for a set of observations
is being addressed in various disciplines of artificial intelligence.
Within the disciplines of model-based diagnosis and abduction es-
pecially, the problem is studied from different perspectives. The best
explanation can for example be defined as a minimum-cardinality ex-
planation, that is, composed of a minimal number of hypotheses, or
as an irredundant explanation, that is, an explanation that is minimal
with respect to set inclusion. The problem of finding the best expla-
nation is well studied in these disciplines and, for different types of
explanation, the computational complexity of the problem has been
established [1].

The problem is also studied within the discipline of probabilis-
tic networks. A probabilistic network is a concise representation of
a joint probability distribution on a set of statistical variables [2].
It is comprised of a graphical structure, encoding the variables and
their interdependences, and an associated set of conditional probabil-
ity distributions. The graphical structure and associated distributions
uniquely define a joint probability distribution over the represented
variables, thereby enabling the computation of any probability of in-
terest. For a probabilistic network, the best explanation for a set of
observations is defined as a value assignment to the network’s vari-
ables that has highest posterior probability given the available obser-
vations, that is, the best explanation is a most likely one. The problem
of finding such an explanation is known as theMPA, or maximum
probability assignment,problem.

While the computational complexity of finding the best explana-
tion has been established for different types of explanation within
the disciplines of model-based diagnosis and abduction, few com-
plexity results are yet available for the MPA problem in probabilis-
tic networks. S. Shimony has proved the MPA problem to be NP-
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hard, building upon a transformation from the VERTEXCOVERprob-
lem [3]; A. Abdelbar and S. Hedetniemi have extended this result
to approximation of the MPA problem [4]. In this paper, we once
again address the computational complexity of the MPA problem,
this time building upon a transformation from the 3-SATISFIABILITY

problem. This transformation allows us to establish complexity re-
sults also for various other problems that are closely related to the
MPA problem. More specifically, we establish NP-hardness of the
MPA-p problem which is the problem, given a probabilityp, to find
an assignment with probability at leastp. We further show that, while
the MPA-p problem is NP-hard, itsfixed-parametervariant where an
assignment with probability at leastp is to be found for afixedratio-
nal numberp, is solvable in linear time.

The paper is organised as follows. In Section 2 we provide some
preliminaries on probabilistic networks. In Section 3 we formally de-
fine the MPA problem and various related problems. In Section 4 we
provide a general construct with which we establish the computa-
tional complexity of each of the problems defined in Section 3. In
Section 5, we address the complexity of the fixed-parameter variant
of the MPA-p problem and present a linear algorithm for solving it.
The paper ends with our concluding observations in Section 6.

2 PRELIMINARIES

A probabilistic networkis a representation of a joint probability dis-
tribution on a set of statistical variables. Before defining the con-
cept of probabilistic network more formally, we introduce some no-
tational conventions. Statistical variables are denoted by capital let-
ters with a subscript, such asVi. In the sequel, we assume all vari-
ablesVi to be binary, taking one of the valuesvi andvi, representing
Vi = true andVi = false respectively; generalisation to variables
with more than two discrete values is straightforward. A conjunction
of values for a set of variablesW is termed anassignmentto W ,
writtenaW ; the assignment to the empty set of variables equalstrue.
We say that two assignmentsaV andaW to the sets of variablesV
andW respectively, areconsistentif aV andaW have the same val-
ues for the variables inV \W . In mathematical formulas, we will
writeW to express that the formula holds for all assignments toW .

A probabilistic network now is a tupleB = (G;�) whereG =
(V (G); A(G)) is a directed acyclic graph and� is a set of condi-
tional probability distributions. In the digraphG, each vertexVi mod-
els a statistical variable. The set of arcs ofG captures probabilistic
independence. Two variablesVi andVj are independent given a set
of variablesW , if eitherVi or Vj is inW , or if every chain between
Vi andVj inG contains a variable fromW with at least one emanat-
ing arc or a variableVk with two incoming arcs such that neitherVk
itself nor any of its descendants are inW . For a topological sort of
the digraphG, that is, for an orderingV1; : : : ; Vn of the variables in



G with i < j for every arc(Vi; Vj) 2 A(G), we now have that any
variableVi is independent of the preceding variablesV1; : : : ; Vi�1

given its set of parents�(Vi). Associated with the digraphG is a set
� of distributions: for each variableVi are specified the conditional
probability distributionsPr(Vi j �(Vi)) that describe the influence
of the various assignments to the variable’s set of parents�(Vi) on
the probabilities of the values ofVi itself.

A probabilistic networkB = (G;�) uniquely defines a joint prob-
ability distributionPr(V (G)) =

Q
Vi2V (G) Pr(Vi j �(Vi)) that re-

spects the independences portrayed by its digraph. Since it defines a
unique probability distribution, a probabilistic network allows for the
computation of any probability of interest over its variables [2].

3 DEFINITIONS

The concept of MPA underlies the problems that we address in this
paper. We begin therefore by formally defining this concept.

Definition 3.1 LetB = (G;�) be a probabilistic network and let
Pr be the joint probability distribution defined byB. LetO be the set
of observed variables inB and letaO denote the available observa-
tions; letX = V (G)nO be the set of unobserved variables inB. An
MPA givenaO is an assignmentaX to X such that for alla0X with
a0X 6= aX , the propertyPr(a0X ^ aO) � Pr(aX ^ aO) holds. The
probability of an MPA givenaO is termed theMAP, or maximum
aposteriori probability, givenaO.

In the sequel, we will often write MPA, and thus omit the available
observationsaO from the notation, as long as ambiguity cannot oc-
cur. We now define the MPA problem and various closely related
problems.

Definition 3.2 LetB = (G;�) be a probabilistic network and letPr
be its joint probability distribution. LetO, aO andX be as above.
We state the following problems, each havingB, X andaO as (part
of ) its input.

a. TheMPA problem is the problem to find an MPA.

b. TheIS-AN-MPA problem is the problem, given an assignmentaX
toX, to decide whetheraX is an MPA.

c. The IS-NOT-AN-MPA problem is the problem, given an assign-
mentaX toX, to decide whetheraX is not an MPA.

d. TheMPA-p problem is the problem, given a probability0 � p �
1, to find an assignmentaX toX withPr(aX ^ aO) � p.

e. TheIS-AN-MPA-p problem is the problem, given a probabilityp
with 0 � p � 1 and an assignmentaX to X, to decide whether
Pr(aX ^ aO) � p.

f. The9-MPA-p problem is the problem, given a probabilityp with
0 � p � 1, to determine whether there exists an assignmentaX
toX withPr(aX ^ aO) � p.

g. TheBETTER-MPA problem is the problem, given an assignment
a0X toX, to find an assignmentaX toX such thatPr(aX^aO) >
Pr(a0X ^ aO).

h. TheMAP problem is the problem to find the maximum probability
p for which there exists an assignmentaX withPr(aX^aO) = p.

The IS-NOT-AN-MPA problem defined above is of interest just for
intermediate steps in the proofs in the sequel. Note that the MPA-
p, IS-AN-MPA-p and9-MPA-p problems have the probabilityp for
their input, in addition to the parametersB, X andaO. Further note

that all problems mentioned above are defined for the setX of all
unobserved variables in a given probabilistic network. To conclude,
we note that all problems can be easily reformulated to include prob-
abilities that are conditional on the observationsaO. The MPA-p
problem, for example, can be reformulated as the problem of finding
an assignmentaX toX with Pr(aX j aO) � Pr(aO) � p, where the
probabilityPr(aO) is a constant with respect to all possible assign-
mentsaX .

Analogous to the problems defined above in which we build on
maximumprobabilities, we define the MINPA, IS-A-MINPA, IS-
NOT-A-MINPA, MINPA-p, IS-A-MINPA-p, 9-MINPA-p, BETTER-
MINPA, and MINAP problems that build onminimumprobabilities.
Note that these problems have trivial solutions if the probability dis-
tribution involved is not strictly positive (a joint probability distribu-
tionPr on a setV of statistical variables isstrictly positiveif, for all
assignmentsaV to V , Pr(aV ) = 0 impliesaV � false).

4 COMPLEXITY OF THE PROBLEMS

We address the computational complexity of the various problems
that we have defined in the previous section. More specifically, we
show for each of these problems that it is polynomially solvable,
NP-complete, coNP-complete, or NP-hard. For further reading on
these and other complexity classes, we refer to [5]. In Section 4.1
we briefly address the probability representation that underlies our
complexity results. Section 4.2 describes a method for constructing
a probabilistic network from an instance of the 3-SATISFIABILITY

problem. In Section 4.3 we then use this construct to establish the
computational complexity of the problems introduced in Section 3.

4.1 Probability representation

An ill-chosen representation of the probabilities of a probabilistic
network may obscure the true complexity of the problems defined
before. To illustrate this observation, we consider a representation in
which for each probability a (Turing machine) program exists that
produces the next decimal digit in polynomial time. With this rep-
resentation we can show for most problems from Definition 3.2 that
they are undecidable. We consider, as an example, theIS-AN-MPA
problem for a probabilistic networkB with a single vertex. LetM
be a Turing machine with an empty input tape; fromM we construct
a program as indicated above. For integersi, we let RUN(M; i) be
true if and only if runningM did not halt before stepi+1; we further
define

r = 4 � 10�1 +
X

i>1;RUN(M;i)

9 � 10�i

If M halts in step 4, for example, we findr = 0:499. In general,
if M halts, we have for its outputr that r < 0:5. If M does not
halt, thenr = 0:49999 � � � = 0:5. FromM , we can build a Turing
machine that creates a next digit ofr in a constant number of steps.
Now consider the probabilistic networkB = (fXg; fPr(x) = rg).
It is readily seen that the assignmentaX = x is an MPA forB if
and only ifM does not halt. With this representation, therefore, the
IS-AN-MPA problem is as least as hard as the HALTING problem,
which is known to be undecidable.

In the remainder of this paper we assume that any probability spec-
ified in the set� of a probabilistic network is given as a fraction of
two integers, both of which are expressed in finite binary notation.
We find this assumption to be reasonable, as a network’s probabil-
ities are often assessed by experts or are estimated as proportions
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from data. With our representation, computing the probability of a
given assignment to all variables and comparing two probabilities,
for example, can be performed in polynomial time, which renders
testing whether a specific problem from Definition 3.2 belongs to a
given complexity class to be of polynomial complexity.

4.2 A construct for our proofs

In this section, we describe a method for constructing a probabilistic
network from a given instance of the well-known 3-SATISFIABILITY

problem; this construct constitutes the basis for several of the proofs
presented in Section 4.3. Before describing the construct in de-
tail, we formally define the 3-SATISFIABILITY problem. LetU =
fX1; : : : ; Xng, n � 1, be a set of Boolean variables. LetC =
fC1; : : : ; Cmg, m � 1, be a set of clauses, where each clause is the
disjunction of exactly three literals of the formXi or X i, Xi 2 U .
The 3-SATISFIABILITY problem(U;C) now is the problem to as-
sign truth values to the variables inU such that

V
Ci2C

Ci � true.
The 3-SATISFIABILITY problem is known to be NP-complete [5].

Given an instance(U;C) of the 3-SATISFIABILITY problem, we
construct a probabilistic networkB(U;C) = (G;�) as follows. For
each Boolean variableXi, we add a vertexXi to the vertex setV (G).
For each clauseCj 2 C, we add a vertexCj toV (G). For all vertices
Xi; Cj 2 V (G), we add an arc(Xi; Cj) to the arc setA(G) of the
digraph if and only if the Boolean variableXi occurs in a literal of
the clauseCj . We further add two auxiliary verticesY andD; the
purpose of these vertices will be explained presently. To conclude
we add arcs(Y;Cj), for allCj 2 V (G), as well as the arc(Y;D) to
A(G). Figure 1 depicts the digraph that is thus constructed from an
example instance.

X1 X2 X3 X4 X5 Y

C1 C2 C3 D

Figure 1. The digraph constructed from the instance(U;C) =
(fX1; : : : ; X5g; ffX1; X2; X5g; fX2; X3; X4g; fX3;X4;X5gg) of

the 3-SATISFIABILITY problem.

To conclude the construction of the networkB(U;C), we associate
with the digraphG a set� of probability distributions. For each (root)
vertexXi 2 V (G), we setPr(xi) = 1

2
. We further setPr(y) = 1

2

for the vertexY . For each vertexCj 2 V (G), we observe that its set
of parents�(Cj) consists ofY and the three verticesXi that occur
in the literals of the clauseCj ; we set

Pr(cj j a�(Cj)) =

8><
>:

3
4

if Cj is satisfied bya�(Cj)nfY g

3
4

if a�(Cj) hasY = true
1
2

otherwise

With this definition, the following property holds: given an assign-
mentaX to all verticesXi, we have for a vertexCj corresponding
with a satisfied clause, thatPr(cj) = 3

4
; for a vertexCj that cor-

responds with an unsatisfied clause, we have the lower probability
Pr(cj) = 1

2
, that is, provided thataY 6= y. The conditional proba-

bility distributions for vertexCj thus in essence capture satisfaction
of the clauseCj . With

Pr(d j aY ) =

(
1
2

if aY = y
3
4

otherwise

for the vertexD 2 V (G), we now enforce easy identification of an
assignmenta, with aY = y, that has the following property: if the
instance(U;C) of the 3-SATISFIABILITY problem does not have a
solution, thena is an MPA for the constructed network; otherwise,
a is the second-best assignment. The following proposition, given
without proof due to space limitations, summarises the main proper-
ties of the thus constructed networkB(U;C).

Lemma 4.1 Let (U;C) be an instance of the3-SATISFIABILITY

problem with the set of Boolean variablesU = fX1; : : : ; Xng,
n � 1, and the set of clausesC = fC1; : : : ; Cmg, m � 1. Let
B(U;C) = (G;�) be the probabilistic network that results from the
construction described above. Then, the following properties hold for
the probability distributionPr defined byB(U;C).

a. The probability of any assignmentaV (G) to V (G) equals
Pr(aV (G)) = ( 1

2
)n+1+i � ( 3

4
)j � ( 1

4
)m+1�i�j , for somei, j, with

i � 0, j � 0, m+ 1� i� j � 0.

b. The probability of the assignmentaV (G) with Vi = true for all
Vi 2 V (G) equalsPr(aV (G)) = ( 1

2
)n+2 � ( 3

4
)m.

c. The probability of the assignmentaV (G) with Y = true andVi =
false for all Vi 2 V (G)nfY g equalsPr(aV (G)) = ( 1

2
)n+2 �

( 1
4
)m.

d. There exists an assignmentaV (G) to V (G) with probability
Pr(aV (G)) = ( 1

2
)n+1 � ( 3

4
)m+1 if and only if (U;C) has a so-

lution.

e. There exists an assignmentaV (G) to V (G) with probability
Pr(aV (G)) = ( 1

2
)n+1 � ( 1

4
)m+1 if and only if (U;C) has a so-

lution.

4.3 The complexity results

Building upon the construct presented in the previous section, we
establish the computational complexity for each of the problems de-
fined in Section 3.

Proposition 4.2 TheIS-NOT-AN-MPA problem is NP-complete.

Proof. We begin by showing that theIS-NOT-AN-MPA problem be-
longs to the complexity class NP. Given the input assignmentaX ,
we non-deterministically select another assignmenta0X to the set
X of unobserved variables. Checking whetherPr(aX ^ aO) <
Pr(a0X ^ aO), that is, checking whetheraX is not an MPA, can be
performed in polynomial time.

To prove NP-hardness, we construct a transformation from the 3-
SATISFIABILITY problem. Let(U;C) be an instance of this problem
and letB(U;C) be the probabilistic network that is constructed from
(U;C) as described in Section 4.2. Now, letaV (G) be the assign-
ment toV (G) with Vi = true for all Vi 2 V (G). From Lemma
4.1.b., we know thatPr(aV (G)) = ( 1

2
)n+2 � ( 3

4
)m. If (U;C) does

not have a solution, thenaV (G) is an MPA by the propertiesa., b.,
andd. from Lemma 4.1. If(U;C) does have a solution, then we have
from Lemma 4.1.d. that there is an assignment different fromaV (G)

with a larger probability, that is,aV (G) is not an MPA. We conclude
that(U;C) has a solution if and only ifaV (G) is not an MPA for the
constructed network. AsB(U;C) andaV (G) can be computed from
(U;C) in polynomial time, we have a polynomial-time transforma-
tion from 3-SATISFIABILITY to theIS-NOT-AN-MPA problem, from
which we conclude NP-hardness of the latter. ut

Analogous to the proof of the previous lemma, we can show that also
the IS-NOT-A-MINPA problem is NP-complete.
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As we have argued before in Section 4.1, our representation of
the probabilities of a probabilistic network enables us to compute
the probability of a given assignment to all variables in the network
in polynomial time; comparing two probabilities has the same com-
plexity. From this observation we have the following proposition; a
similar property holds for theIS-A-MINPA-p problem.

Proposition 4.3 TheIS-AN-MPA-p problem can be solved in poly-
nomial time.

Building upon the previous two propositions, we now state complex-
ity results for the remaining six problems from Definition 3.2.

Proposition 4.4 The following properties hold.

a. TheIS-AN-MPA problem is coNP-complete.

b. The9-MPA-p problem is NP-complete.

c. TheMPA, MPA-p, BETTER-MPA, andMAP problems are NP-
hard.

Proof. Due to space limitations, we restrict our proof to the first two
properties.

a. We observe that theIS-AN-MPA problem is the complement of
the IS-NOT-AN-MPA problem. From Proposition 4.2 and the defini-
tion of coNP-completeness, we have that theIS-AN-MPA problem
is coNP-complete.

b. We begin by showing that the9-MPA-p problem belongs to
the class NP. Given the input probabilityp, we non-deterministically
select an assignmentaX to the setX of unobserved variables. From
Proposition 4.3 we have that checking whetherPr(aX ^ aO) � p
takes polynomial time.

To prove NP-hardness, we construct a transformation from the 3-
SATISFIABILITY problem. Let(U;C) be an instance of this problem
and letB(U;C) be the probabilistic network that is constructed from
(U;C) as described before. Now, letp = ( 1

2
)n+1 � ( 3

4
)m+1. From

Lemma 4.1.d., we have that there is an assignment with probability
at leastp if and only if (U;C) has a solution. AsB(U;C) andp can
be computed from(U;C) in polynomial time, we have a polynomial-
time transformation from 3-SATISFIABILITY to the9-MPA-p prob-
lem, from which we conclude NP-hardness of the latter. ut

Analogous to the previous proposition, we can formulate simi-
lar complexity results for the MINPA, IS-A-MINPA, 9-MINPA-
p, MINPA-p, BETTER-MINPA, and MINAP problems. Note that
Lemma 4.1.e. provides for the proof of NP-completeness of the9-
MINPA-p problem.

5 FIXED-PARAMETER VARIANTS

In the previous section, we have shown that the9-MPA-p problem is
NP-complete and that the MPA-p problem is NP-hard. We have stud-
ied these problems in a variant where the probabilityp is part of their
input. In this section, we again address the two problems, this time
in a variant where the probabilityp is no longer part of the input but
a fixed rational number. For further reading on the fixed-parameter
complexity of problems, we refer the reader to [6]. We show that the
fixed-parameter variants of the two problems mentioned above can
be solved in linear time.

To prove our complexity results for the two fixed-parameter prob-
lems, we begin by considering the special situations where the prob-
ability p equals either zero or one. As any assignment to a network’s
variables has a probability at least 0, the fixed-parameter variant of

the9-MPA-p problem forp = 0 can be decided in the affirmative,
even without inspecting the problem’s input. Forp = 1, a simple
linear-time algorithm is readily constructed to test if there is a (nec-
essarily unique) assignment with probability 1. We now proceed by
constructing an algorithm for the9-MPA-p problem, for0 < p < 1,
that uses a branch-and-bound technique for searching the space of all
possible assignments to a network’s variables. The algorithm con-
structs a search tree by recursively assigning appropriate values to
the variables in the network, in the order of a topological sort of its
digraph. Branches of the tree are pruned dynamically with the help
of a simple criterion that verifies whether or not it is possible to ex-
tend the assignment associated with the branch to an assignment to
all variables with a large enough probability. We first describe the
algorithm and then address its correctness and running time.

Our algorithm uses the recursive procedure E-MPA-P. This pro-
cedure takes for its input a probabilistic networkB, the setO of
observed variables along with their assignmentaO, an arrayA, a
probabilityp, and an integeri. The arrayA[1 � � �n] is used to store
values for the variables in the network; the elementA[i] stores a value
for the variableVi. We assume, without loss of generality, that in the
first call to the procedure the elements of the arrayA are initialised
at true. The input parameteri denotes the level in the search tree that
is currently being investigated; at leveli, the search process has fixed
the values for the variablesV1; : : : ; Vi. In the first call to the proce-
dure, the parameteri is initialised at0. The following pseudocode
now summarises our algorithm.

procedure E-MPA-P(B;O; aO; A; p; i)
if p > 1 then return falseendif;
if i = n then return true endif;
computeq = Pr(vi+1 j V1 = A[1]; : : : ; Vi = A[i]);
if q 6= 0 and (Vi+1 62 O or (Vi+1 2 O andVi+1 = true))
thenA[i + 1] := true;

if E-MPA-P(B;O; aO; A; p=q; i + 1)
then return true
endif;

endif;
if q 6= 1 and (Vi+1 62 O or (Vi+1 2 O andVi+1 = false))
thenA[i + 1] := false;

if E-MPA-P(B;O; aO; A; p=(1� q); i+ 1)
then return true
endif;

endif;
return false.

Note that the probabilityq computed by the algorithm is readily
obtained from the set of probability distributions� of the proba-
bilistic network under consideration, since we have thatPr(Vi j
V1; : : : ; Vi�1) = Pr(Vi j �(Vi)) for all variablesVi.

Our algorithm correctly solves the9-MPA-p problem, as is stated
in the following lemma.

Lemma 5.1 Let the procedureE-MPA-Pbe as defined above. For
eachi, the (recursive) callE-MPA-P(B;O; aO; A; p; i) returns the
value true if and only if there is an assignmentaV (G) to V (G) that
satisfies the following three conditions:

a. Pr(aV (G)) � p�
Y

j=1;:::;i

Pr

0
@Vj = A[j] j

^
k=1;:::;j�1

Vk = A[k]

1
A;

b. for all j = 1; : : : ; i, aV (G) is consistent withVj = A[j];

c. aV (G) is consistent withaO.

4



Proof. To prove the property stated in the lemma we use downwards
induction oni. As the lemma is clearly correct forp > 1, we assume
in the remainder of the proof thatp � 1.

Now consider, for our induction basis, the situation wherei = n.
The call to E-MPA-P then outputs the valuetrue. We show that an
assignmentaV (G) to V (G) exists that satisfies the three conditions
stated in the lemma. LetaV (G) be an assignment such that the second
and third condition are satisfied, that is,aV (G) is consistent withaO
and, for allj = 1; : : : ; n, aV (G) is consistent withVj = A[j]. Then,
from the distributionPr defined by the network we have that

Pr(aV (G)) =
Y

j=1;:::n

Pr

0
@Vj = A[j] j

^
k=1;:::;j�1

Vk = A[k]

1
A

With p � 1, we conclude that an assignment satisfying the three
conditions exists.

Now consider the situation wherei < n. Suppose that there is an
assignmentaV (G) to V (G) that satisfies the three conditions stated
in the lemma. We show that the call E-MPA-P(B;O; aO; A; p; i)
returns the valuetrue. We distinguish betweenVi+1 having the value
true in aV (G), andVi+1 having the valuefalse. If Vi+1 = true
in aV (G), then the procedure finds the valueq = Pr(vi+1 j
V1 = A[1]; : : : ; Vi = A[i]) > 0. In the recursive call E-MPA-
P(B;O; aO; A; p=q; i+ 1), we then have that

Pr(aV (G)) � p �
Y

j=1;:::;i

Pr

0
@Vj = A[j] j

^
k=1;:::;j�1

Vk = A[k]

1
A

= (p=q) �
Y

j=1;:::i+1

Pr

0
@Vj = A[j] j

^
k=1;:::;j�1

Vk = A[k]

1
A

Using induction, we know that this recursive call will returntrue.
Similarly, whenaV (G) hasVi+1 = false, the alternative recursive
call from the procedure will return the valuetrue. Conversely, it is
readily shown, again by induction, that if either of these recursive
calls returnstrue, then an assignmentaV (G) satisfying the conditions
from the lemma exists. ut

The following proposition now states that the fixed-parameter vari-
ants of the MPA-p and9-MPA-p problems are solvable in linear
time. The proof of the properties builds upon the algorithm outlined
above.

Proposition 5.2 For every fixed rational numberp 2 [0; 1], there
exist algorithms for solving theMPA-p and 9-MINPA-p problems
that useO(n) time on a probabilistic network withn variables.

Proof. As mentioned before, the property stated in the proposition
trivially holds for p = 0 andp = 1. We now show that, for every
fixed rational numberp with 0 < p < 1, the E-MAP-P procedure
for solving the9-MPA-p problem takes linear time. To this end, we
investigate the search tree constructed by the procedure. A leaf of
this tree is calledtrue, if it returns the valuetrue; otherwise, it is
called false. A node of the search tree is calledbranching, if it has
two children, none of which is a false leaf. With each nodex, we
associate the value ofp from the corresponding call to the E-MPA-P
procedure; this value is denotedpx. Similarly, qx denotes the value
of q during the call. Letr be the root of the tree.

For a childy of a nodex in the search tree, we have thatpy � px,
as eitherpy = px=qx and0 < qx � 1, or py = px=(1 � qx) and

0 � qx < 1. For a branching nodex, we have that0 < qx < 1,
px=qx � 1 andpx=(1 � qx) � 1, from which we havepx � qx,
px � 1� qx andqx � 1� px. Now, suppose thaty is a child of the
branching nodex. We have that eitherpy = px=qx � px=(1�px) �
px=(1� pr), or py = px=(1� qx) � px=(1� px) � px=(1� pr).
With induction, it follows that, if there are� branching nodes on the
path from the rootr to a nodez, thenpz � pr=(1 � pr)

�. If this
nodez is a true leafz, then1 � pz � pr=(1 � pr)

�, from which
we conclude that� � log pr= log(1� pr), which is a constant for a
fixed rationalpr.

From the above observations we have that, if the probabilityp in
the9-MINPA-p problem is a fixed rational number, then the number
of branching nodes on a path from the root of the search tree to a true
leaf is bounded by a constant, and hence the total number of branch-
ing nodes is bounded by a constant. The number of nodes in the tree,
therefore, is linear inn wheren is the number of variables of the in-
put network. Every node of the tree corresponds to a recursive call to
the E-MPA-P procedure in which the computations to be performed
require constant time. For every fixed rational numberp, therefore,
the total time of running the algorithm thus isO(2log p=log(1�p) � n),
that is, linear in the number of variables of the input network.

We observe that the MPA-p problem can be solved by the E-
MPA-P procedure after a minor modification: instead of return-
ing the valuetrue, the procedure must return the corresponding as-
signment. The above proof therefore easily extends to the fixed-
parameter variant of the MPA-p problem. ut

6 CONCLUSIONS

We have addressed the computational complexity of various prob-
lems for probabilistic networks. We have shown, for example, that
the9-MPA-p problem is NP-complete and that the MPA-p problem
is NP-hard. In addition, we have established the computational com-
plexity of various other problems that are closely related to these two
problems. Our results show that MPA-related problems are hard to
solve, indicating that only heuristic algorithms can serve to feasibly
solve them in general. Special instances of the problems, however,
may be more readily solvable. This observation holds, for example,
for probabilistic networks with certain restricted topologies [7]. Here
we have shown that also the fixed-parameter variants of the two prob-
lems mentioned above are easy to solve: we have shown that these
problems can be solved in linear time.
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