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Abstract. The problem of finding the best explanation for a set hard, building upon a transformation from th& NTExCovERprob-
of observations is studied within various disciplines of artificial in- lem [3]; A. Abdelbar and S. Hedetniemi have extended this result
telligence. For a probabilistic network, finding the best explanationto approximation of the MPA problem [4]. In this paper, we once
amounts to finding a value assignment to all the variables in the netagain address the computational complexity of the MPA problem,
work that has highest posterior probability given the available obserthis time building upon a transformation from the 338sFIABILITY
vations. This problem is known as tMPA, or maximum probability ~ problem. This transformation allows us to establish complexity re-
assignmentproblem In this paper, we establish the computational sults also for various other problems that are closely related to the
complexity of the MPA problem and of various closely related prob- MPA problem. More specifically, we establish NP-hardness of the
lems. Among other results, we show that, while the Mpproblem, MPA-p problem which is the problem, given a probabilityto find
where an assignment with probability at leass to be found, is NP-  an assignment with probability at leastWe further show that, while
hard, its fixed-parameter variant is solvable in linear time. the MPAp problem is NP-hard, itBxed-parametevariant where an
assignment with probability at legsis to be found for dixedratio-
nal numberp, is solvable in linear time.
1 INTRODUCTION The paper is organised as follows. In Section 2 we provide some
reliminaries on probabilistic networks. In Section 3 we formally de-

The problem of finding the best explanation for a set of observationﬁne the MPA problem and various related problems. In Section 4 we

is being addressed in various disciplines of artificial intelligence. id | ith which blish th
Within the disciplines of model-based diagnosis and abduction edlrovide a genera construct with which we es_ta IS the gomputa—
gonal complexity of each of the problems defined in Section 3. In

pecially, the problem is studied from different perspectives. The bes ion 5 dd h lexity of the fixed .
explanation can for example be defined as a minimum-cardinality ex= ection 5, we address the comp exny_ of the X -parameter_ var_lant
f the MPA+ problem and present a linear algorithm for solving it.

planation, that is, composed of a minimal number of hypotheses, o?h ds with udi b i in Section 6
as an irredundant explanation, that is, an explanation that is minime;ll— € paper ends with our conciuding observations In Section o.

with respect to set inclusion. The problem of finding the best expla-

nation is well studied in these disciplines and, for different types of2 PRELIMINARIES

explz?aﬂog, ihe computational complexity of the problem has been, probabilistic networkis a representation of a joint probability dis-
es?h IS ebl[ 1 is al died within the discioli ¢ brobabili tribution on a set of statistical variables. Before defining the con-
_'he problem IS also stu led wit |r.1t € discipliine of probabilis- cept of probabilistic network more formally, we introduce some no-
tic n_etvvorks. A_prob_abl_llsn_c s concise representation Oftational conventions. Statistical variables are denoted by capital let-
a joint probability distribution on a set of statistical variables [2]. ters with a subscript, such . In the sequel, we assume all vari-
It is comprised of a graphical structure, encoding the variables angblesVi to be binary, taking one of the valuesandw;, representing
their interdependences, and an associated set of conditional probabjyl- _ true andV; — falserespectively; generalisation to variables
. . . . . . . . . T . ’

ity distributions. The graphical structure and associated dlstrlbutlon§\,ith more than two discrete values is straightforward. A conjunction
uniquely define a joint probability distribution over the representedOf values for a set of variabled’ is termed anassignmento W
variables, thereby enabling the computation of any probability of in'writtenaw; the assignment to the empty set of variables eduats
terest. For a probabilistic network, the best explanation for a set O{/\/e say that two assignments: anday to the sets of variables
observations is defined as a value assignment to the network’s vark respectively, areonsistentf ay anday have the same val-
ables that has highest posterior probability given the available Obse[ies for the variablés i A W In mathematical formulas. we will
"a“_"”% that is, the best expl_ana'tion is amost likely one. The prObIerQ/rite W to express that the formula holds for all assignmentd’to

of finding such an explanation is known as tH&A, or maximum A probabilistic network now is a tupl® = (G, T) whereG =
proba_blllty aSS|gnmenprobIem . - (V(G), A(@)) is a directed acyclic graph arid is a set of condi-

. While the computa_tlonal complexny of finding the best ,EXplgna_'tional probability distributions. In the digragh, each verte¥; mod-
tion has_ bfeen established for dlfferent pres of expla_natlon WIthInels a statistical variable. The set of arcs(oitaptures probabilistic
the (_jlsmpllnes of model-pased diagnosis and abducyon, few COMhdependence. Two variablé andV; are independent given a set
plexny results are y_et available for the MPA problem in probabilis- variablesiV’, if either V; or V; is in W', or if every chain between
tic networks. S. Shimony has proved the MPA problem to be NP_Vi andVj in G contains a variable frori#” with at least one emanat-
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G with i < j for every arc(V;, V;) € A(G), we now have that any that all problems mentioned above are defined for theXsef all
variableV; is independent of the preceding variablés ..., Vi_, unobserved variables in a given probabilistic network. To conclude,
given its set of parents(V;). Associated with the digrapfi isaset ~ we note that all problems can be easily reformulated to include prob-
T of distributions: for each variablg; are specified the conditional abilities that are conditional on the observatians. The MPAp
probability distributionsPr(V; | =(V;)) that describe the influence problem, for example, can be reformulated as the problem of finding
of the various assignments to the variable’s set of pare(its) on an assignmenix to X with Pr(ax | ao) - Pr(ao) > p, where the

the probabilities of the values &f; itself. probability Pr(ao) is a constant with respect to all possible assign-
A probabilistic networkB = (G, T") uniquely defines a joint prob- mentsax.
ability distributionPr(V(G)) = [ Iy, cv (g Pr(Vi | ©(Vi)) that re- Analogous to the problems defined above in which we build on

spects the independences portrayed by its digraph. Since it defineswwaximumprobabilities, we define the MPA, 1s-A-MINPA, Is-
unique probability distribution, a probabilistic network allows for the NOT-A-MINPA, MINPA-p, IS-A-MINPA-p, 3-MINPA-p, BETTER-
computation of any probability of interest over its variables [2]. MINPA, and MNAP problems that build ominimumprobabilities.
Note that these problems have trivial solutions if the probability dis-
tribution involved is not strictly positive (a joint probability distribu-
3 DEFINITIONS tion Pr on a sefl” of statistical variables istrictly positiveif, for all

The concept of MPA underlies the problems that we address in thigssignmentay to V, Pr(ayv) = 0 impliesay = falsg.

paper. We begin therefore by formally defining this concept.

Definition 3.1 Let B = (G,I") be a probabilistic network and let 4 COMPLEXITY OF THE PROBLEMS

Pr be the joint probability distribution defined . LetO be the set  We address the computational complexity of the various problems
of observed variables i and letao denote the available observa- that we have defined in the previous section. More specifically, we
tions; letX = V(G)\O be the set of unobserved variablesBnAn  show for each of these problems that it is polynomially solvable,

MPA givenao is an assignmenix to X such that for alla’x with  NP-complete, coNP-complete, or NP-hard. For further reading on
a’x # ax, the propertyPr(a’y A ao) < Pr(ax Aao) holds. The  these and other complexity classes, we refer to [5]. In Section 4.1
probability of an MPA giveruo is termed theMAP, or maximum  we briefly address the probability representation that underlies our
aposteriori probability, givem.o. complexity results. Section 4.2 describes a method for constructing

a probabilistic network from an instance of the 383&FIABILITY
In the sequel, we will often write MPA, and thus omit the available proplem. In Section 4.3 we then use this construct to establish the

observationsio from the notation, as long as ambiguity cannot oc- computational complexity of the problems introduced in Section 3.
cur. We now define the MPA problem and various closely related

problems. . .
4.1 Probability representation

Definition 3.2 LetB = (G, I") be a probabilistic network and |&tr
be its joint probability distribution. LeO, ap and X be as above.
We state the following problems, each haviBgX andao as (part
of) its input.

An ill-chosen representation of the probabilities of a probabilistic
network may obscure the true complexity of the problems defined
before. To illustrate this observation, we consider a representation in
which for each probability a (Turing machine) program exists that
a. TheMPA problem is the problem to find an MPA. produces the next decimal digit in polynomial time. With this rep-
. . . resentation we can show for most problems from Definition 3.2 that
b. Theis-aAN-MPA problem is the problem, given an assignmest : .

. ) they are undecidable. We consider, as an examplasthei-MPA

to X, to decide whethei x is an MPA. L . .
) ) _ problem for a probabilistic networB with a single vertex. Lef\/

c. Thels-NOT-AN-MPA problem is the problem, given an assign- pe a Turing machine with an empty input tape; frafwe construct

mentax to X, to decide whethet x is not an MPA. a program as indicated above. For integerse let RUN M, i) be
d. TheMPA-p problem is the problem, given a probability< p < true if and only if running)/ did not halt before step+ 1; we further
1, to find an assignmentx to X withPr(ax A ao) > p. define
e. Theis-AN-MPA-p problem is the problem, given a probability r=4-10""+ Z 9.10°"
with0 < p < 1 and an assignmentx to X, to decide whether i>1,RUN(M, i)

Pr(ax ANao) > p.

If M halts i 4, f | find= 0.499. | |
f. The3-MPA-p problem is the problem, given a probabiljpywith alts in step 4, for example, we find = 0.499. In general,

0<p< 1 todetermi hether th ist . t if M halts, we have for its output thatr < 0.5. If M does r_10t
5P 0 determine whether there exists an assignman halt, thenr = 0.49999 --- = 0.5. From M, we can build a Turing
to X with Pr(ax A ao) > p. machine that creates a next digitiofn a constant number of steps.
g. TheBETTER-MPA problem is the problem, given an assignment Now consider the probabilistic netwoi® = ({X}, {Pr(z) = r}).
ay t0 X, tofind an assignmentx to X suchthaPr(axAao) > |tis readily seen that the assignmen¢ = z is an MPA for B if
Pr(a)x Aao). and only if M does not halt. With this representation, therefore, the
h. TheMAP problem is the problem to find the maximum probability IS-AN-MPA problem is as least as hard as theLfING problem,
p for which there exists an assignment with Pr(ax Aap) = p. ~ Which is known to be undecidable.
Inthe remainder of this paper we assume that any probability spec-
The 1s-NOT-AN-MPA problem defined above is of interest just for ified in the sefl” of a probabilistic network is given as a fraction of
intermediate steps in the proofs in the sequel. Note that the MPAtwo integers, both of which are expressed in finite binary notation.
p, 1S-AN-MPA-p and3-MPA-p problems have the probabiligyfor We find this assumption to be reasonable, as a network’s probabil-
their input, in addition to the parameteBs X andao. Further note  ities are often assessed by experts or are estimated as proportions



from data. With our representation, computing the probability of afor the vertexD € V' (G), we now enforce easy identification of an
given assignment to all variables and comparing two probabilitiesassignment:, with ay = y, that has the following property: if the
for example, can be performed in polynomial time, which rendersinstance(U, C') of the 3-SATISFIABILITY problem does not have a
testing whether a specific problem from Definition 3.2 belongs to asolution, them is an MPA for the constructed network; otherwise,

given complexity class to be of polynomial complexity.

4.2 A construct for our proofs

a is the second-best assignment. The following proposition, given
without proof due to space limitations, summarises the main proper-
ties of the thus constructed netwabk, ).

In this section, we describe a method for constructing a probabilisti¢ emma 4.1 Let (U,C) be an instance of th8-SATISFIABILITY

network from a given instance of the well-known 24$SFIABILITY

problem with the set of Boolean variablés = {Xi,...,X,},

problem; this construct constitutes the basis for several of the proofg > 1, and the set of clause§ = {C1,...,Cn}, m > 1. Let
presented in Section 4.3. Before describing the construct in deB ;; -, = (G,T) be the probabilistic network that results from the

tail, we formally define the 3-&ISFIABILITY problem. LetU =
{X1,...,Xn}, n > 1, be a set of Boolean variables. Lét =
{C4,..
disjunction of exactly three literals of the for; or X;, X; € U.
The 3-SATISFIABILITY problem (U, C) now is the problem to as-
sign truth values to the variables in such thatA ., ., Ci = true.
The 3-ATISFIABILITY problem is known to be NP-complete [5].
Given an instancéU, C) of the 3-SXTISFIABILITY problem, we
construct a probabilistic networBy ¢y = (G,TI") as follows. For
each Boolean variabl&;, we add a verteX; to the vertex set’ (G).
Foreach claus€; € C, we add a vertex’; to V(G). For all vertices
Xi,C; € V(G), we add an ar¢X;, C;) to the arc setd(G) of the
digraph if and only if the Boolean variabl&; occurs in a literal of
the clauseC;. We further add two auxiliary vertices and D; the

purpose of these vertices will be explained presently. To conclude

we add arcgY, C;), for all C; € V(G), as well as the arY, D) to

A(G). Figure 1 depicts the digraph that is thus constructed from an

example instance.

X1 X2 X3 X4 X5 Y

Ci C> Cs D
Figure 1. The digraph constructed from the instar{ég C') =
({Xla sy X5}a {{X17X27 X5}a {XQ,X3aX4}7 {X3aX4aX5}}) of
the 3SATISFIABILITY problem.

To conclude the construction of the netwdsk,, ), we associate
with the digraph a sefl” of probability distributions. For each (root)
vertexX; € V(G), we setPr(z;) = . We further sePr(y) = 1
for the vertext”. For each vertex’; € V(G), we observe that its set
of parentsr(C;) consists oft” and the three vertice¥; that occur

in the literals of the claus€;; we set
if C; is satisfied byi(c;)\ (v}
PI‘(C]‘ | a,,(g].)) = if Qr(C;) hasY = true

otherwise

NI= W lw

construction described above. Then, the following properties hold for
the probability distributionPr defined byB 1/, ¢).

.,Cm}, m > 1, be a set of clauses, where each clause is the

a. The probability of any assignmenty ), to V(G) equals
Pr(ay() = (3)" T ()7 . (5)m ="~ for somei, j, with
i>0,j>0,m+1—i—j>0.

b. The probability of the assignment ¢, with V; = true for all
Vi € V(G) equalsPr(ay(c)) = (3)" 7 - (2)™.

c. The probability of the assignmemi ) withY” = true andV; =
false for all V; € V(G)\{Y'} equalsPr(ay () = ()" -
()™

d. There exists an assignmeat ) to V(G) with probability

Pr(av(e) = ($)"T - (3)™*"if and only if (U, C) has a so-

lution.

e. There exists an assignmetif () to V(G) with probability

Pr(ayv ) = (3)""' - (3)™*! if and only if (U, C) has a so-

lution.

4.3 The complexity results

Building upon the construct presented in the previous section, we
establish the computational complexity for each of the problems de-
fined in Section 3.

Proposition 4.2 Theis-NOT-AN-MPA problem is NP-complete.

Proof. We begin by showing that the-NOT-AN-MPA problem be-
longs to the complexity class NP. Given the input assignment
we non-deterministically select another assignmeéptto the set
X of unobserved variables. Checking whetiarax A ao) <
Pr(a’y A ao), that is, checking whetherx is not an MPA, can be
performed in polynomial time.

To prove NP-hardness, we construct a transformation from the 3-
SATISFIABILITY problem. Let(U, C') be an instance of this problem
and letBy, ¢y be the probabilistic network that is constructed from
(U,C) as described in Section 4.2. Now, ket be the assign-
ment toV(G) with V; = true for all V; € V(G). From Lemma
4.1b., we know thatPr(av(c)) = (3)"** - (2)™. If (U,C) does
not have a solution, themy ) is an MPA by the propertiea., b.,
andd. from Lemma 4.1. I{U, C') does have a solution, then we have

With this definition, the following property holds: given an assign- from Lemma 4.1d. that there is an assignment different fram e

mentax to all verticesX;, we have for a vertex’; corresponding
with a satisfied clause, th@tr(c;) = 2; for a vertexC; that cor-

with a larger probability, that isyy () is not an MPA. We conclude
that(U, C) has a solution if and only ity (¢ is not an MPA for the

responds with an unsatisfied clause, we have the lower probabilit¢onstructed network. AB(;; oy anday () can be computed from

Pr(c;) = 1, that s, provided thaty # y. The conditional proba-

(U, C) in polynomial time, we have a polynomial-time transforma-

bility distributions for vertexCj thus in essence capture satisfaction tjon from 3-SATISFIABILITY to theisS-NOT-AN-MPA problem, from

of the clause”';. With

ifay =y
otherwise

Pr(d | ay) = {

W =

which we conclude NP-hardness of the latter. O

Analogous to the proof of the previous lemma, we can show that also
the1s-NOT-A-MINPA problem is NP-complete.



As we have argued before in Section 4.1, our representation ahe 3-MPA-p problem forp = 0 can be decided in the affirmative,
the probabilities of a probabilistic network enables us to computeeven without inspecting the problem’s input. For= 1, a simple
the probability of a given assignment to all variables in the networklinear-time algorithm is readily constructed to test if there is a (nec-
in polynomial time; comparing two probabilities has the same com-essarily unique) assignment with probability 1. We now proceed by
plexity. From this observation we have the following proposition; aconstructing an algorithm for thé& MPA-p problem, ford < p < 1,
similar property holds for thes-A-MINPA-p problem. that uses a branch-and-bound technique for searching the space of all
possible assignments to a network’s variables. The algorithm con-
Proposition 4.3 Theis-AN-MPA-p problem can be solved in poly- structs a search tree by recursively assigning appropriate values to
nomial time. the variables in the network, in the order of a topological sort of its
digraph. Branches of the tree are pruned dynamically with the help
Building upon the previous two propositions, we now state complex-f a simple criterion that verifies whether or not it is possible to ex-
ity results for the remaining six problems from Definition 3.2. tend the assignment associated with the branch to an assignment to
all variables with a large enough probability. We first describe the
algorithm and then address its correctness and running time.
a. Thels-AN-MPA problem is coNP-complete. Our algorithm uses the recursive_prqcedure E-MPA-P. This pro-
. cedure takes for its input a probabilistic netwaBk the setO of
b. The3-MPA-p problem is NP-complete. observed variables along with their assignmept an arrayA, a
c. TheMPA, MPA-p, BETTER-MPA, and MAP problems are NP-  probability p, and an integei. The arrayA[l - - - n] is used to store
hard. values for the variables in the network; the eleméfit stores a value
for the variableV;. We assume, without loss of generality, that in the

Proof. Due to space limitations, we restrict our proof to the first two . AT
properties. first call to the procedure the elements of the ardagre initialised

a. We observe that thes-AN-MPA problem is the complement of attrue. The input parametedrdenotes the level in the search tree that
the IS-NOT-AN-MPA problem. From Proposition 4.2 and the defini- is currently being investigated; at leviekhe search process has fixed

tion of coNP-completeness, we have that theaN-MPA problem the values for the vg_riapl_d_él,_. -, Vi. In the first c_aII to the proce-
is coNP-complete. dure, the par_ameterls |n|t|§1I|sed at0. The following pseudocode

b. We begin by showing that the-MPA-p problem belongs to now summarises our algorithm.
the class NP. Given the input probabiljtywe non-deterministically
select an assignmeaf to the setX of unobserved variables. From
Proposition 4.3 we have that checking whetRefax A ao) > p
takes polynomial time.

To prove NP-hardness, we construct a transformation from the 3-
SATISFIABILITY problem. Let(U, C') be an instance of this problem
and letBy, ¢y be the probabilistic network that is constructed from
(U, C) as described before. Now, Ipt= (3)"*" - (2)™*'. From
Lemma 4.1d., we have that there is an assignment with probability
at leastp if and only if (U, C') has a solution. A3y, andp can
be computed fronU, C) in polynomial time, we have a polynomial-
time transformation from 3-8 ISFIABILITY to the3-MPA-p prob-
lem, from which we conclude NP-hardness of the latter. O

Proposition 4.4 The following properties hold.

procedure E-MPA-P(B, 0, a0, A, p, 1)
if p > 1 then return falseendif;
if 2 = n then return true endif;
computeg = Pr(viy1 | Vi = A[l],..., Vi = Afi]);
if gZ0and V41 € O or (Viy1 € O andV;41 = true))
then Afi + 1] :=true;
if E-MPA-P(B,0,a0,A,p/q,i+ 1)
then return true
endif;
endif;
if gZ1and Vit1 € O or (Vi1 € O andV;4, = falsg)
then Afi 4+ 1] :=falsg
if E-MPA-P(B,0,a0,A,p/(1 —q),i+1)
then return true
endif;
endif;
return false

Analogous to the previous proposition, we can formulate simi-
lar complexity results for the MiPA, 1S-A-MINPA, 3-MINPA-

p, MINPA-p, BETTER-MINPA, and MNAP problems. Note that
Lemma 4.1e. provides for the proof of NP-completeness of the

MiNPA-p problem. Note that the probability; computed by the algorithm is readily

obtained from the set of probability distributioisof the proba-
5 FIXED-PARAMETER VARIANTS bilistic network under consideration, since we have tRatV; |

In the previous section, we have shown that3khelPA-p problem is Vi, ur A‘I/orlzhmlj:z)(r:/(;(:'t;r(sol)\zggr;!ll\\;lzgﬁblesr‘c:blem as is stated
NP-complete and that the MPAproblem is NP-hard. We have stud- in the foII%win lemma y PP '
ied these problems in a variant where the probabjility part of their 9 '

input. In this section, we again address the two problems, this t'mfemma 5.1 Let the procedur€-MPA-P be as defined above. For
in a variant where the probabilifyis no longer part of the input but eachi, the (recursive) calE-MPA-P(B, 0, ao, A, p, i) returns the

a fixed rational number. For further reading on the fixed-parameter, value true if and only if there is an assignment ) to V(G) that
complexity of problems, we refer the reader to [6]. We show that theSatlsfles the following three conditions: @

fixed-parameter variants of the two problems mentioned above can
be solved in linear time.

To prove our complexity results for the two fixed-parameter proba. Pr(ay(s)) > p- H Pr | V; = A[j] | /\ Vi = A[K] |;
lems, we begin by considering the special situations where the prob- J=1,..,i k=1,...,j—1
ability p equals either zero or one. As any assignment to a networkb. forallj =1,...,4, ay (¢ is consistent with; = A[j];

variables has a probability at least 0, the fixed-parameter variant of ay (@) is consistent witho.

4



Proof. To prove the property stated in the lemma we use downward® < ¢, < 1. For a branching node, we have thad < ¢, < 1,

induction oni. As the lemma is clearly correct fpr> 1, we assume
in the remainder of the proof that< 1.

Now consider, for our induction basis, the situation whete n.
The call to E-MPA-P then outputs the valtree. We show that an

Pz/q= < landp,/(1 — ¢.) < 1, from which we have, < ¢,
pz <1 — ¢, andg, <1 — p,. Now, suppose that is a child of the
branching node. We have that either, = p/qz > p=/(1—pz) >
pa/(L—=pr), 0rpy =pa/(1 — @) 2 pa/(1 = pz) 2 pa/(1 = pr).

assignment., (¢ to V(G) exists that satisfies the three conditions With induction, it follows that, if there ara branching nodes on the
stated in the lemma. Let, ) be an assignment such that the secondpath from the root to a nodez, thenp. > p, /(1 — p,)*. If this

and third condition are satisfied, thatds; ) is consistent withuo
and, forallj = 1,...,n, ay(g) is consistent witth; = A[j]. Then,
from the distributiorPr defined by the network we have that

Priav) =[] Pr[V;=All
j=1

With p < 1, we conclude that an assignment satisfying the thre

conditions exists.

Now consider the situation wheie< n. Suppose that there is an
assignment.y () to V(G) that satisfies the three conditions stated

in the lemma. We show that the call E-MPA®, O, ao, A,p, 1)
returns the valuerue. We distinguish betweev; ., having the value
true in av (), and Vi1 having the valuefalse If Vi1, = true
in ay (g, then the procedure finds the valye = Pr(viii |
Vi = A[1],...,Vi = A[i]) > 0. In the recursive call E-MPA-
P(B,0,a0,A,p/q,i+ 1), we then have that

Pr(av) >p -

= (/a) - ] Pr|Vi=ALll
J=1,it1 k

Using induction, we know that this recursive call will retumne.
Similarly, whenay (@) hasV;1: = falsg the alternative recursive
call from the procedure will return the valdrie. Conversely, it is

nodez is a true leak, thenl > p. > p./(1 — p.)*, from which
we conclude that < log p,/log(1 — p,), which is a constant for a
fixed rationalp,.

From the above observations we have that, if the probability
the3-MINPA-p problem is a fixed rational number, then the number
of branching nodes on a path from the root of the search tree to a true
leaf is bounded by a constant, and hence the total number of branch-
ing nodes is bounded by a constant. The number of nodes in the tree,

etherefore, is linear im wheren is the number of variables of the in-

put network. Every node of the tree corresponds to a recursive call to
the E-MPA-P procedure in which the computations to be performed
require constant time. For every fixed rational numpetherefore,

the total time of running the algorithm thus@2'°8 P/109(1=p) . ),

that is, linear in the number of variables of the input network.

We observe that the MPA-problem can be solved by the E-
MPA-P procedure after a minor modification: instead of return-
ing the valuetrue, the procedure must return the corresponding as-
signment. The above proof therefore easily extends to the fixed-
parameter variant of the MPA-problem. O

6 CONCLUSIONS

We have addressed the computational complexity of various prob-
lems for probabilistic networks. We have shown, for example, that
the 3-MPA-p problem is NP-complete and that the MRAsroblem

is NP-hard. In addition, we have established the computational com-
plexity of various other problems that are closely related to these two
problems. Our results show that MPA-related problems are hard to
solve, indicating that only heuristic algorithms can serve to feasibly

readily shown, again by induction, that if either of these recursivesolve them in general. Special instances of the problems, however,

calls returngrue, then an assignment, () satisfying the conditions
from the lemma exists. O

may be more readily solvable. This observation holds, for example,
for probabilistic networks with certain restricted topologies [7]. Here
we have shown that also the fixed-parameter variants of the two prob-

The following proposition now states that the fixed-parameter vari{ems mentioned above are easy to solve: we have shown that these

ants of the MPAp and 3-MPA-p problems are solvable in linear
time. The proof of the properties builds upon the algorithm outlined
above.

problems can be solved in linear time.
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Proposition 5.2 For every fixed rational numbey € [0, 1], there
exist algorithms for solving th&®1PA-p and 3-MINPA-p problems
that useO(n) time on a probabilistic network with variables.

Proof. As mentioned before, the property stated in the proposition [1]
trivially holds forp = 0 andp = 1. We now show that, for every
fixed rational numbep with 0 < p < 1, the E-MAP-P procedure 2]
for solving the3-MPA-p problem takes linear time. To this end, we
investigate the search tree constructed by the procedure. A leaf of3]
this tree is calledrue, if it returns the valudrue; otherwise, it is 4]
calledfalse A node of the search tree is callbdanching if it has
two children, none of which is a false leaf. With each nadeve
associate the value pffrom the corresponding call to the E-MPA-P  [5]
procedure; this value is denotgd. Similarly, g, denotes the value
of ¢ during the call. Let be the root of the tree. (6]
For a childy of a noder in the search tree, we have thgt> p,, 7]
as eithemp, = p./q. and0 < ¢, < 1, 0rp, = p./(1 — ¢») and
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