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Abstract. To support building and maintaining knowledge-based
systems for real-life application domains, sophisticated knowledge-
engineering methodologies are available. As more and more
Bayesian networks are being developed for complex applications,
their construction and maintenance calls for the use of tailor-made
knowledge-engineering methodologies. We have designed such a
methodology and have studied its use within the domain of oe-
sophageal cancer. Based upon expert knowledge and a previously
constructed Bayesian network, we have built an ontology for this do-
main, from which we have constructed, in a sequence of steps, a new
network. The use of our methodology has allowed us to address, in a
structured fashion, the various intricate modelling issues involved.

1 INTRODUCTION

Building and maintaining a knowledge-based system for a complex
real-life application domain is a hard and time-consuming process.
Knowledge has to be elicited from domain experts and carefully cap-
tured in the representation formalism used by the system. Nowadays,
sophisticated knowledge-engineering methodologies are available to
support this process [1].

As demonstrated by an increasing number of applications in a
range of domains, more and more knowledge-based systems use the
formalism of Bayesian networks for their knowledge representation.
A Bayesian network consists of a graphical structure, encoding sta-
tistical variables from the domain of application along with the in-
fluential relationships between them, and an associated numerical
part, encoding a joint probability distribution over these variables
[2]. Building such a network involves three basic tasks [3]. First, the
statistical variables that are important in the domain must be identi-
fied, along with their possible values. Secondly, the relations between
these variables must be identified and expressed in a graphical struc-
ture. The last task is to obtain the probabilities that are required for
the network’s numerical part. These tasks are typically performed
with the help of domain experts.

Although building network-based systems resembles building
knowledge-based systems in general, constructing a Bayesian net-
work involves specific modelling issues, such as modelling domain
concepts as statistical variables, that require more tailored method-
ologies. While the size and complexity of real-life networks have
increased over the last decade, however, the literature on engineer-
ing network-based systems has not kept pace. Recently, an overall
systems-engineering methodology has been advocated [4, 5]. We feel
that such a methodology should indeed be adopted, but that it should
be further detailed to arrive at a tailor-made methodology.

1 Institute of Information and Computing Sciences, Utrecht Univer-
sity, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands. Email:
feveline,linda g@cs.uu.nl

In this paper, we propose a knowledge-engineering methodology
for building and maintaining Bayesian networks. Our methodology
falls into line with more general methodologies that build upon the
use of a knowledge model. We propose to model the knowledge of an
application domain into an ontology and derive from this ontology, in
a sequence of steps addressing modelling issues, the graphical struc-
ture of a Bayesian network. For quantifying the structure, we propose
the use of currently available probability elicitation methods.

We have studied the use of our methodology within the domain
of oesophageal cancer. We have constructed an ontology for this do-
main, based upon expert knowledge and upon a real-life Bayesian
network that we had constructed before without the use of any spe-
cific methodology. We have derived various alternative graphical net-
work structures from this ontology. The use of our methodology has
allowed us to address, in a structured fashion, the intricate modelling
issues involved. Comparison of the new graphical structures with the
structure of the original network has in fact uncovered some awk-
ward modelling decisions in the original network.

In this paper we introduce our knowledge-engineering methodol-
ogy tailored to building Bayesian networks. As our methodology has
not yet been fully developed and validated, we focus our presentation
on its use within our application domain. In Section 2, we briefly in-
troduce the domain of oesophageal cancer. In Section 3, we outline
the basic idea of our methodology. In Section 4, we describe the on-
tology that we have constructed for our application domain. In Sec-
tion 5, we show how alternative graphical structures can be derived
from this ontology. The paper ends with our concluding observations.

2 THE OESOPHAGUS NETWORK

As a consequence of a lesion of the oesophageal wall, a tumour
may develop in a patient’s oesophagus. The various characteristics
of the tumour, including its length and shape, influence its growth.
The tumour typicallyinvadesthe oesophageal wall and, upon fur-
ther growth, may affect such neighbouring organs as the trachea. In
time, the tumour may result in secondary tumours, or metastases, in
lymph nodes and in such other organs as the liver and the lungs. A
distinction is made betweenlymphatic metastasesand haematoge-
nous metastasesthat result from conveyance of cancer cells via the
lymph vessels and via the blood vessels, respectively. The depth of
invasion and the extent of the metastases, which are summarised in
the cancer’sstage, are indicative of the effects and complications to
be expected from the different available therapeutic alternatives.

With the help of two experts in gastrointestinal oncology, we have
built a Bayesian network for the staging of a patient’s cancer of the
oesophagus [6]. The network includes a graphical structure encoding
statistical variables and the probabilistic relationships between them.
The variables represent the concepts that are relevant for establishing
the stage of a patient’s cancer. The probabilistic influences between



the variables are represented by directed links, or arcs. The set of
arcs, more formally, captures probabilistic independence. Two vari-
ables are said to be independent given available observations if every
chain between the two variables contains an observed variable with
at least one emanating arc, or a variable with two incoming arcs such
that neither the variable itself nor any of its descendants in the graph
have been observed. The strengths of the represented influences are
indicated by conditional probabilities. The oesophagus network in-
cludes some 40 statistical variables and a thousand probabilities.

3 AN OVERVIEW OF THE METHODOLOGY

Most currently available knowledge-engineering methodologies,
roughly speaking, propose to develop aknowledge modelin which
domain knowledge is captured, and to use this model for construct-
ing aknowledge base. Capturing knowledge directly in a knowledge
base may result in a representation from which the domain knowl-
edge is not easily recognizable as a result of the modelling decisions
taken. First developing a separate knowledge model may thus prevent
discrepancies that would seriously hamper the system’s construction
and maintenance. In our methodology we have adopted the use of
a knowledge model. Because a Bayesian network cannot represent
procedural knowledge, we have focused on the declarative domain
knowledge only; providing for the procedural knowledge to be in-
corporated in a network-based system is subject to further research.
As in deriving a network from a knowledge model numerous issues
play an important role that are specific for Bayesian networks, we
focus in this paper explicitly on the exploitation of the model.

In constructing a knowledge model, domain knowledge is ac-
quired, usually from experts, and explicitly captured. For specifying
the knowledge, which typically consists of concepts and the relations
between them, we adopt the use of ontologies in our methodology
[7]. Our ontology contains all knowledge that is to be captured in a
network, as well as the available meta-level and background knowl-
edge. It represents the knowledge in a structured fashion, for example
in depictions, understandable for both the knowledge engineers and
experts involved. It thus documents elicited domain knowledge and
can be used as a basis for communication during engineering.

From the ontology that results from the previous phase of our
methodology, a graphical structure is derived that after quantifica-
tion should constitute a network that faithfully captures the relevant
domain knowledge. This derivation takes place in two phases. First,
the knowledge that is directly relevant for the network is selected
from the ontology; the remainder of the ontology serves as back-
ground knowledge. The central concepts and relations from the se-
lected knowledge are then combined into a single depiction. Based
upon this depiction, a graphical structure is derived that adheres to
the syntax of Bayesian networks. To this end, the domain concepts
from the depiction are translated into statistical variables, that is, into
variables with an exhaustive state space of mutually exclusive, dis-
crete values; the relations from the depiction are subsequently trans-
lated into arcs between variables. In this phase, the translation of
relations is performed without paying much attention to the fact that
the arcs should correctly capture probabilistic independence.

Secondly, the graphical structure resulting from the previous phase
is improved and optimised. As obtaining the probabilities is gener-
ally the bottleneck in developing a Bayesian network, the structure
is first restricted to include only variables for which probabilities can
be reasonably obtained, either from data or from experts. The arcs
in the structure are then investigated as to whether or not they cor-
rectly capture the probabilistic independences that hold in the appli-

cation domain. Arcs may have to be added or reversed. The resulting
structure now faithfully represents the domain knowledge, but may
be suboptimal from a practical point of view. To guarantee a feasi-
ble running time of probabilistic inference, the number of incoming
arcs per variable may have to be reduced, for example, by removing
weak dependences or by divorcing parents [2, 5]. Furthermore, the
state spaces of some of the variables may have to be restricted. Note
that both types of optimisation also help in reducing the number of
probabilities that have to be assessed for the graphical structure. To
fine-tune the structure, the optimisation steps are iterated.

In the derivation of a graphical structure from the ontology, de-
cisions must be taken on numerous issues. Different decisions can
result in different alternative structures. Since building a Bayesian
network is a creative process, there is not always good reason to pre-
fer one alternative to another. Especially in the optimisation phase,
there is a trade-off between the desire for a rich network that captures
the intricacies of the domain and the running time of probabilistic
inference. The outcome of the trade-off will then depend on the re-
quirements of the application. As not all trade-offs can be resolved
as they arise, we propose to maintain several alternative structures,
that are pruned as they are further developed. An issue to take into
account upon pruning is that preserving the structure and contents
of the model, or ontology, as much as possible during the derivation
contributes to the maintainability of the resulting system [1].

We would like to note that the depiction of the selected knowledge
as well as the alternative graphical structures can be quite large. We
therefore propose to address small, semantically meaningful units of
knowledge at a time. The consequences of any decision for a single
unit on the other units should then be carefully taken into account
throughout all the phases of the network’s construction.

The quantification of a graphical structure is not yet fully sup-
ported by our methodology. We feel that a domain’s uncertainties,
and hence a network’s quantification, should be taken into account al-
ready when building the ontology. This is subject to further research,
however. For now we would like to mention that feasible methods are
currently available that can be applied for quantifying the graphical
structure that results from the earlier phases of our methodology [8].

4 THE OESOPHAGUS ONTOLOGY

In our methodology, the knowledge model used is anontology. The
term ontology refers to an explicit specification of the domain knowl-
edge that is shared, for example by the experts and knowledge en-
gineers involved in a system’s construction [9]. An ontology speci-
fies the knowledge that is explicitly captured in the system as well
as the more implicit background knowledge of the domain and the
meta-level knowledge of its regularities. Our main goal in develop-
ing an ontology is to make all elicited domain knowledge explicit.
We have constructed an ontology for the field of oesophageal cancer.
We would like to note that, although our ontology is based on the
oesophagus network and the knowledge that has been elicited for the
network’s construction, it has not yet been validated in detail.

In developing an ontology, the representation language to be used
should be chosen with care. It should introduce as little bias as pos-
sible in the contents and structure of the captured knowledge; other-
wise, the ontology may not properly reflect the intricacies of the do-
main and may introduce errors in the future system. The language of
Bayesian networks fails to meet this criterion, as important informa-
tion may be lost in the translation of domain concepts and relations.
We feel moreover, that an ontology that is expressed as a Bayesian
network cannot serve as a communication medium between domain



experts and knowledge engineers, mainly because the conceptual dis-
tance between the ontology and the way the experts think and talk
about their domain would be too large. For the oesophagus ontol-
ogy, we have chosen a semi-informal representation language that
includes tables, graphs, and natural language. We feel that a more
formal representation language would be less suitable, since using
formal languages is uncommon in our application domain.

An ontology generally consists of several components that spec-
ify the domain knowledge at different levels of abstraction and from
different perspectives. For the oesophagus ontology, we have distin-
guished between a glossary, a component that specifies the knowl-
edge from a static perspective, i.e., a perspective in which time does
not play a role, and a component taking a dynamic perspective. To
ensure that no inconsistencies arise in the ontology, validity axioms
have been specified for the components and their interrelationships.

The glossaryof our ontology lists the names of the relevant do-
main concepts and their meanings. It serves to avoid ambiguity of
terms. For example, where the domain experts use the termmetasta-
sisto refer to the process of conveyance of cancer cells via the blood
or lymph vessels as well as to a secondary tumour resulting from this
process, we have chosen an unambiguous name for each meaning
and have included these, with their meanings, in the glossary.

The component that takes astatic perspectiveon the knowledge
addresses the hierarchical organisation of domain concepts. A con-
cept may, for example, be a superset or a generalisation of another
concept; it may also be a property or a value of another concept.
This type of knowledge is represented as standardis-a, part-of, and
object-attribute-valuerelations in hierarchies. Figure 1 shows a sim-
plified fragment of the hierarchy of pathological entities (the term
pathological refers to a deviation from what is normal). The compo-
nent further specifiesdefinitionalrelations that define the value of an
attribute in terms of values of other attributes. For example, the at-
tributeT-classof the conceptprimary tumouris defined to have the
valueT3 only if the attributesdepth at siteanddepth outside siteof
this concept have the valuesadventitiaandnone, respectively.

The domain of oesophageal cancer involves processes that have
important effects over time. For example, the pathological process of
metastasis via the blood vessels may result, in time, in a secondary
tumour in the liver. We use the phrasedynamic relationto refer to re-
lations between concepts that pertain to such processes. The compo-
nent of our ontology that takes a dynamic perspective on the domain
knowledge, specifies these relations at different description levels.
At the lowest level, relations between attribute values are captured,
along with their natures. This level specifies, for example, that the
attribute valuepresence=yesof the process ofmetastasis via blood
vesselsmay result in the attributepresenceof metastasis liveradopt-
ing the valueyes. At the next description level, relations between
attributes are represented. They capture whether or not two attributes
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Figure 1. A fragment of the hierarchy of pathological entities
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Figure 2. A fragment of the attribute-level graph of dynamic relations

are related at the value level, and thus abstract from specific values.
Figure 2 depicts some of the relations at this level. It shows, for ex-
ample, that the pathological process of invasion may affect the depth
of invasion of the primary tumour into the oesophageal wall. The tu-
mour may further invade neighbouring organs, provided it has grown
through the entire wall. We say that the depth of invasion at the pri-
mary siteenablesthe invasion outside the oesophagus. Furthermore,
a tumour that has invaded the oesophageal wall mayinitiate a pro-
cess of metastasis via the blood vessels, which in turn mayresult in
liver or lung metastases. Abstraction of the knowledge represented at
the attribute level, using theis-a andobject-attributerelations from
the hierarchies, results in the highest description level that explicitly
represents the regularities in the domain knowledge.

5 THE DERIVATION OF THE STRUCTURE

The ontology constructed in the previous phase of our methodology
is used to derive a graphical structure for a Bayesian network that
captures the relevant domain knowledge. In this section, we illus-
trate the modelling decisions involved in deriving such a structure
from the oesophagus ontology. Due to space limitations, we restrict
the discussion to the knowledge that pertains to the haematogenous
metastases and the depth of invasion of the primary tumour. We ig-
nore the interrelationships with the remainder of the ontology.

We begin by selecting, from our ontology, the knowledge we
would like to address. The central concepts and relations of this
knowledge are then represented in several depictions. Figure 3 shows
the depiction for the depth of invasion of the primary tumour. Note
that the depiction describes the knowledge at the attribute level. This
level often provides a convenient point of departure for deriving an
initial graphical structure since attributes generally play the role of
variables in a domain and can easily be associated with statistical
variables. The depiction further combines relations from different
components of our ontology: it includes, for example, staticdefini-
tional relations and dynamicresulting relations. Theinitiating re-
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Figure 3. The depiction for the depth of invasion



lations indicated by dashed arcs connect the depictions of the two
selected units of knowledge.

The knowledge that pertains to haematogenous metastases may
be considered from different points of view, resulting in the two
alternative depictions from Figure 4. Alternative (a) describes that
the process ofmetastasis via blood vesselsmay result in metastases
in the lungs and metastases in the liver, which are summarised as
haematogenous metastasis. Alternative (b) captures a relation at a
higher level: the process ofmetastasis via blood vesselsmay result
in haematogenous metastases, which may be in the lungs or in the
liver. A depiction that combines both points of view would include a
redundancy and is therefore not considered. As at this stage there is
no reason to prefer one alternative to the other, they will both be used
to derive graphical structures. Since theis-a relations in the hierar-
chies are undirected in view of the causal interpretation that is often
assigned to directed arcs, the attribute-level relations that are derived
from them are left undirected in the depictions.
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Figure 4. Alternative depictions for the haematogenous metastases

Based upon the depictions, several graphical structures are de-
rived. For ease of presentation, we will combine the two units of
knowledge into a single structure. Translating the attributes from the
depictions into statistical variables is rather straightforward, because
the state spaces of the attributes are exhaustive, including discrete,
mutually exclusive values. Most of the arcs from the depictions are
also translated directly into arcs for a graphical structure. Because
the syntax of Bayesian networks only allows arcs between variables,
however, translating theenabling relation is more involved. Since
this relation in essence represents a dependence of the attributedepth
outside siteon the attributedepth at site, an arc is added from the
variableDepth-atto the variableDepth-outside. Translating the undi-
rectedis-a relations further involves deciding upon a direction. The
only feasible alternatives are to direct the arcs both into or both from
the variableHaema-metas, since its relation with either location of
metastases is the same. Figure 5 shows two of the resulting alterna-
tive structures; the other two alternatives are obtained by reversing
the arcs betweenHaema-metas, Metas-liver, andMetas-lungs.

In the next phase, the resulting initial structures are improved and
optimised. The structures are first restricted to include only variables
for which probabilities can be reasonably obtained. Since the variable
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Figure 5. Alternative initial structures (a) and (b)

Metas-blood-vesselsrepresents a pathological process that cannot be
observed, it would be very hard for domain experts to provide prob-
ability assessments for this variable. It is therefore removed from all
alternative structures, along with its incident arcs. To retain theindi-
rect influences of the initiators of this process of metastasis, arcs are
added from the variablesDepth-atandDepth-outsideto the variables
Metas-liverandMetas-lungsin alternative (a), and toHaema-metas
in alternative (b). Figure 6 shows the thus restricted graphical struc-
tures. To further optimise the structures, the variableInvasionand its
incident arcs are removed. Because this variable will always have the
valueyesin the application under construction, it will have afixed
probabilistic influence on the other variables in the network. To cir-
cumvent the necessity of assessing probabilities that should not be
used by the application, this fixed influence is best modelled through
the assessments for the variables that are directly affected.

We observe that the restricted structures specify arcs from the
variable Depth-outsideto the variablesMetas-liver, Metas-lungs,
Haema-metas, andT-class. These variables, however, do not depend
on the specific organ being invaded, but rather on whether or notany
organ outside the oesophagus is invaded. We note that the variable
Depth-athas so far been defined to have the three different layers
of the oesophageal wall for its values. Now, by including a fourth
value that indicates that the primary tumour has grown through all
the layersand beyond, the arcs fromDepth-outsideto the variables
mentioned above are rendered superfluous. These arcs can thus be
removed, thereby further reducing the complexity of the structure.
Another consequence of the extension of the domain ofDepth-atis
that its relation with the variableT-classhas become deterministic:
each value ofDepth-atis mapped onto exactly one value ofT-class,
and vice versa. We therefore replace the two variables and the arc
between them by a single variable, calledInvasion-wall. For reasons
of clarity, the name ofDepth-outsideis changed toInvasion-organs.
The results of these optimisations are shown in Figure 7.

The alternative optimised structures are now investigated as to
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Figure 6. Alternative restricted structures (a) and (b)
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Figure 7. Alternative optimised structures (a) and (b)

whether or not they correctly capture probabilistic independence. We
find that none of the alternatives faithfully represents the indepen-
dences that hold in our domain. In the alternative from Figure 7(a),
for example, the variablesMetas-liverandMetas-lungsare shown to
be independent givenInvasion-wall. Now, if the primary tumour has
just invaded the first layer of the oesophageal wall, liver metastases
are not very likely. However, if it is known that there are lung metas-
tases, then we must conclude that the process of metastasis via the
blood vessels has been initiated, which renders the presence of liver
metastases more likely. We therefore conclude that this independence
does not hold in the domain. In alternative (b), the variablesMetas-
liver and Metas-lungsare shown to be independent givenHaema-
metas. This independence also does not hold in the domain: if a pa-
tient is known to have haematogenous metastases and no metastases
are present in the liver, then there must be metastases in the lungs.
The other independences portrayed by the two alternatives appear to
hold in our domain. Investigation of the two other alternatives reveals
them to be of inferior quality; they are therefore no longer consid-
ered. The representation of independence in the structures (a) and (b)
can in essence be corrected by adding an arc between the variables
Metas-liverandMetas-lungs. As this would increase the complexity
of the structures as well as their distance from the ontology, we have
chosen not to adopt this correction.

For deciding upon the final structure, we consider the nature of the
inaccuracies in the representation of independence. The erroneous
assumption of independence in alternative (a) pertains to the very
unlikely combination of a shallow invasion of the oesophageal wall
and the presence of metastases in either the lungs or the liver. Only
infrequently, therefore, will the assumption be violated. The incor-
rect assumption of independence in alternative (b), however, is more
harmful. Consider for example a patient whose test results indicate
absence of lung metastases. As a consequence of the assumption of
independence, the test results will erroneously be construed as be-
ing a contraindication for the presence of haematogenous metastases
while the patient may in fact have metastases in the liver. This ob-
servation is confirmed by experimental results from the two alterna-
tives, studied within the context of the entire oesophagus network
using data from real patients with oesophageal cancer. Although the
performance of the two networks does not differ with respect to the
percentage of correctly staged patients, the probabilities with which
the stages are concluded differ significantly. Especially for patients
in whom the situation outlined above occurs, the network with al-
ternative (a) concludes the correct stage with a probability that is
0.2 greater on average than the probability yielded by the network
with alternative (b). Although the original network includes alterna-
tive (b), we feel that alternative (a) is the preferred alternative.

We would like to note that probabilistic independence could have
been checked for the initial structures. However, checking indepen-
dence is time-consuming and can be more efficiently done in a re-
stricted structure. Moreover, a structure that correctly captures in-
dependence may become incorrect upon optimisation. For example,
the initial structure from Figure 5(a) correctly represents the indepen-

dence ofMetas-liverandMetas-lungsgivenMetas-blood-vessels; it
has become incorrect by the removal of the variableMetas-blood-
vessels. We feel that it is advisable nonetheless to check indepen-
dence as early as possible and to repeat it upon optimisation.

6 CONCLUSIONS AND FURTHER RESEARCH

Building a Bayesian network for a real-life application domain is a
hard and time-consuming task that calls for the use of tailor-made
knowledge-engineering methodologies. We have developed such a
methodology, in which we propose to model the domain knowl-
edge into an ontology, from which a network’s graphical structure
is derived in a sequence of steps. The ontology serves to document
the elicited domain knowledge. The fashion in which the graphical
structure is derived from the ontology provides for explicit manage-
ment of modelling decisions. In the various phases, inopportune de-
cisions are effectively forestalled. Furthermore, phase-specific guide-
lines support the knowledge engineer in taking the decisions re-
quired. We have illustrated the use of our methodology in the field
of oesophageal cancer.

Although we have successfully applied our methodology to a real-
life application domain, we are aware that it has not been fully devel-
oped and evaluated as yet. Further refinement may be needed after its
use in other domains. We also expect to develop additional and more
detailed guidelines to be used in deriving a graphical structure from
an ontology. Future research further includes the management of un-
certainties throughout a network’s construction and the incorporation
of procedural knowledge, to ultimately arrive at a methodology that
supports not just the construction of a Bayesian network but also its
embedding in a knowledge-based system.
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