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Abstract. The preferences of an agent can be expressed in vari-
ous ways. The agent may indicate goals having different levels of
priority for him, or provides classes of choices with their level of sat-
isfaction for him. The first type of specification can be captured in
possibilistic logic under the form of constraints on a necessity mea-
sure. It is shown in this paper that the second manner for expressing
preferences can be encoded as constraints on a so-called ”guaranteed
possibility” measure (a min-decomposable function with respect to
disjunction). The paper shows how each representation is semanti-
cally associated with a possibility distribution (which plays the role
of a value function), and how necessity-based possibilistic logic rep-
resentations can be translated directly into a guaranteed possibility-
based representations and vice-versa. In logical terms, it corresponds
to the transformation of a generalized CNF into a generalized DNF.
Reasoning in guaranteed possibility-based logic is also discussed.
Moreover, the two types of representations can also be shown to be
equivalent to sets of conditional preference statements. Thus, differ-
ent basic modes of preference expression can be captured in the same
framework.

1 Introduction

In decision analysis, preferences are assumed to be represented by a
utility or a value function which assesses the degree of satisfaction
of each possible choice. However, the end-user of a decision-support
system or of a recommender system is not always able to provide
such a function directly for expressing preferences. A more implicit
specification in terms of constraints may be often more natural for
the user. These constraints can have different forms.
The use of possibilistic logic for stating goals with their levels of pri-
ority has been advocated by several authors [8, 9]. It has been shown
how to recover a qualitative value function from such a specification
[6]. However a preference format in terms of prioritized goals is not
always the most natural way for expressing what is looked for. In-
deed, one may as well indicate that if the choice is taken in some
subset, then some level of satisfaction is reached, and this for a col-
lection of subsets. The user may also have comparative statements,
specifying for instance that if � is true, having � true is preferred to
having � false. This last form of expression has been already related
to the possibilistic framework [1]. But, the modelling of constraints,
stated in terms of satisfaction levels of subsets of choices, have not
been cast in the possibilistic logic setting yet.
The paper shows that this can be done by handling constraints in
terms of a so-called guaranteed possibility measure � . A constraint
of the form �����	��

� (where � is a logical formula, and � be-
longs to a linearly ordered scale), means that any solution making �
�
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true is at least satisfactory to level � . By contrast, weighted formu-
las in standard possibilistic logic of the form ��������� are underlied by
constraints of the type ��������
�� where � is a necessity measure.
��������
�� means that the formula � has a priority level at least equal
to � , and thus if a choice violates � , its satisfaction degree will be up-
per bounded by �! "� (where �# $�&%'� is the order-reversing map of
the scale). The higher the priority, the smaller the satisfaction degree
of any choice violating the constraint. So the greater the number of
constraints of the form ������(��)
*��( , the more restricted is the set
of highly satisfactory choices (which may turn to be empty in case
of conflict). On the contrary, the greater the number of constraints of
the form �+���-,.�/
$�0, , the larger the set of satisfactory choices. The
� -based information is combined disjunctively, while the N-based
information is combined conjunctively. The paper establishes how it
is possible to move from a N-based representation to a � -based rep-
resentation and conversely. This greatly facilitates the joint handling
of the two types of preference information in the same setting.
The paper is organized as follows. After a short background on stan-
dard possibilistic logic, the expression of preferences is discussed
in the two basic formats (priority-based vs. satisfaction-based con-
straints) in Section 3. Section 4 presents the � -based logic repre-
sentation setting and the associated inference machinery, while Sec-
tion 5 provides the translation of a N-information possibilistic logic
base into a � -information logic base, and the converse transforma-
tion. The concluding remarks point out the interest of the results for
representing and fusing information in possibilistic logic, as well as
some other uses of the � -based logic.

2 Background

We consider a propositional language 1 over a finite alphabet 2 of
atoms. 3 denotes the set of all classical interpretations (called also
solutions or choices here). 4��65 denotes the set of all models of the
proposition � .
At the semantic level, the basic notion in possibilistic logic is called
a possibility distribution, and denoted by 7 [11]. This is a simple way
for encoding a preferential ordering [10]. A possibility distribution 7
maps each element 8 of 3 into the unit interval 9 :;���=< or more simply
in any totally ordered scale (finite or not). Intuitively, a possibility
distribution can encode the preferences of an agent among possi-
ble choices. 7>��8�� represents the degree of satisfaction of a choice
8 . By convention, 7>��8��@?A� means that 8 is fully satisfactory for
the agent, �)BC7D��8��EB�: means that 8 is only somewhat satisfac-
tory, while 7>��8��@?F: means that 8 is not satisfactory at all. When
7>��8��EBG7>��8�HI� , 8 is preferred to 8�H . A possibility distribution 7 is
said to be normalized if there exists at least one interpretation 86J
such that 7D��8DJK��?L� .
A possibility distribution 7 induces two mappings grading respec-



tively the consistency and the necessity of a formula:
– The consistency or possibility degree of � , denoted by � ���	� , ex-
presses to what extent having � true is consistent with the available
requirements expressed by the preferences. Formally, �@���	� is de-
fined by: � ���	� ?�������� 7D��8����08
	 ?���� .
– The necessity (or priority) degree of a formula � , denoted by �����	� ,
expresses to what extent � is entailed by the prioritized goals. �����	�
is defined by duality as follows: �����D� ? �  
� ��� �D� .
Namely, �����	� ?�������� �  7D��8���� 8
�	 ?���� .
The duality equation �����	�#? �  ��@���6�	� extends the existing one
in classical logic, where a formula is entailed from a set of proposi-
tional formulas if and only if its negation is inconsistent with this set.
A necessity-based possibilistic logic base (a N-information base for
short) is composed of a finite set of weighted formulas of the form� ?�� ��� ( �&� ( ����������� , where � ( is a propositional formula and � (
belongs to a priority scale. ���>( �&� ( � means that the priority degree of
�	( is at least equal to �;( i.e., �����	( ��
"� ( . The higher the weight, the
more prioritary the goal � ( .
Associated with a N-information base

�
, is a unique possibility dis-

tribution, denoted by 7 � . The interpretations satisfying all the formu-
las in

�
have the highest possibility degree, namely � , and the other

interpretations will be ranked with respect to the highest formula that
they falsify, namely we get [6]:

Definition 1 ! 8"� 3 �
7 � ��8���?

# � if !	���	( � � ( ��� � �K8$	 ?"�	(
�/ %�+����� � ( � ��� ( � � ( �&� �

and 8'�	 ?�� ( � otherwise.

3 Prioritized goals vs. sets of satisfactory choices

A set of crisp goals with different levels of priority can always be
represented as a possibilistic logic base, as illustrated now.

Example 1 Hierarchical requirements.
In the database setting [7], requirements of the following form are
often considered:
”Property ( � should be satisfied, and among the solutions to ( � (if
any) the ones satisfying requirement (*) are preferred, and among
satisfying both ( � and ( ) , those satisfying requirement (*+ are pre-
ferred and so on”.
( � �,(�)0�,( + �.-/-/- are here supposed to be classical constraints. Thus,
one wishes to express that ( � should hold (with importance or pri-
ority � � ? � ), and that if ( � holds, (0) should hold with priority
� ) , and if ( � and ( ) hold, (�+ should hold with priority �1+ (with
� +32 ��) 2 � � ). This can be readily expressed by the possibilistic
propositional logic base (where ( ( ?L4�4 ( 5 )� ?5� ��4 � � �.�76 ����4 �*8 4 ) �&� ) �76 ����4 ��8 ��4 ) 8 49+0�&��+ �,� .

A semantically equivalent form for
�

[6] can be obtained by apply-
ing the possibilistic logic resolution rule, ��� � 8 ��� � �=� ��� 8�: �&���<;
��� 8�: �=�����D��� �&���&� . Namely

� ?�� ��4 � �K�K�76���49)0�&��)K�76 ��4 + �&� + �,� . It cor-
responds to the distribution:

7 � ��8���?������D��>�?A@0��8��=�B�����D��>�?�C0��8��=� �  ��) �&�=�
�����D��> ?ED ��8��=���/ ��+ �&� (1)

where >F?HG&��8���?L� if 8���( ( and >�?AG&��8���?$: if 8���I( ( .
Such an expression, or more generally the expressions obtained with
Definition 1, provides conjunctive normal forms (i.e., it is a min of
max). They can be turned into disjunctive normal forms (max of
min) and then provide a description of the different classes of choices
ranked according to their level of satisfaction, as seen in the example
below (all the candidates in a class reach the same level of satisfac-
tion).

Example 2 Let us consider the following two constraint-based eval-
uation:
- if 8 satisfies J and K , 8 is completely satisfactory, and
- if J is not satisfied, solutions should at least satisfy ( .

Such an evaluation function can be encountered for instance in mul-
tiple criteria problems for handling ”special” cases (here situations
where A is not satisfied) which coexist with normal cases (here
situations where both J and K can be satisfied). It can be directly
represented at the semantic level by the disjunctive form:

7ALK��8���?������	�������D��>0M���8��=�N>0O���8��&�=�
�����D��> ? ��8��=� �  P>0M���8��=���� � �&� with � 2 � % (2)

The reading of this expression is easy. Either the candidate
satisfies both J and K , or if it falsifies J , it satisfies ( , which is
less satisfactory. This expression obtained as the weighted union
of the two different classes of more or less acceptable solutions
can be transformed into an equivalent conjunctive form like (1);
it can be checked that this conjunctive form corresponds to the
base

� ?Q� ��R 8 4 ���K�=� ���SR 8�T � �.�=� ��R���� �=� � T � � �,� , where J �=KE�,(
are the sets of models of R�� T and 4 respectively (Section 5.1
will give a general method for obtaining

�
in such a case). This

provides a logical, equivalent description of the evaluation process
in terms of prioritized requirements to be satisfied by acceptable
solutions. Note that in this information base, the formula � T �&� � can
be removed since it can be recovered from ���SR 8�T ���K� and ��R�� � �
using the possibilistic resolution principle. It is worth noticing that
the clausal form corresponding to the possibilistic logic base

�
may be sometimes less natural for expressing the goals than the
associated normal disjunctive form (2) as shown by Example 2
above. Example 1 illustrates the converse situation where

�
provides

an easy reaching of the preferences.
The normal disjunctive form provides a logical description of the
different subsets of solutions each with their level of acceptability.
On the contrary, a possibilistic logic base which can always be put
under the form of a conjunction of possibilistic clauses corresponds
to a prioritized set of goals.

4 A logical representation of guaranteed possibility
measures

4.1 U -based information bases

In possibility theory, there is another measure called the guaranteed
possibility measure [5]:

Definition 2 The guaranteed possibility measure of � , denoted by
�����	� , is defined by:

�����	��?��������07D��8���� 8$	 ?���� %
Hence ����� 8 ���E?V�����D�������	�=���������&� and � is decreasing w.r.t.
logical entailment. �+���D� estimates the minimal degree of satisfac-
tion of the preferences (encoded by 7 ) when � is known to be true.
Clearly, we have ! � �������	��W�� ���	� ; however the guaranteed possi-
bility measure �����	� is not related with the necessity measure �����	�
(although �����	��W �/ ����� �	� ).
This section completes previous works [5] on the logical representa-
tion of guaranteed possibility-based logical bases. In particular, we
provide the counterparts of subsumption, equivalence between for-
mulas, and inference. More generally, next subsections show that all
the notions used in standard possibilistic logic have their ”dual coun-
terparts”. We start by introducing the notion of � -information bases.



A � -based information base ( � -information base for short) is a set
of weighted formulas, denoted by ��? � 9 � ( �&� ( < � �!? �0�.-/- - �=��� ,
where � ( represents the lower bound of the guaranteed possibility
degree associated with formula �>( i.e. �����	(���
 � ( .
Notation: In the whole paper, formulas in N-information bases are
denoted by ��� ( �&� ( � , and those of � -information bases are denoted by
9 � ( �&� ( < . We call the former N-formulas and the latter � -formulas.

4.2 From a U -information base to a possibility
distribution

In � -information bases �"?V� 9 � ( �&� ( < �*� ? � �.-/-/- �=��� , each piece
of information 9 � ( �&� ( < is viewed as a constraint expressing that any
interpretation satisfying �>( is considered as being satisfactory to at
least a degree � ( . Therefore, the possibility distribution 7 associated
with � should satisfy:

!	9 � ( �&� ( <S����� ���-��� ( ��
"� ( �
where � � ���	( � is the guaranteed possibility degree associated with
�	( and computed from 7 using Definition 2.
Let us first consider a simple case where � is only composed of one
� -formula i.e., � ?5� 9 � � �&� � < � . Figure 1 explicits the set of possibil-
ity distributions 7 satisfying the constraints � � ��� � ��
"� � .
Then, it can be easily checked(see Figure 1) that the following possi-
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Figure 1. The set of possibility distributions associated with
� ?�� 9 � � �&� � < � .

bility distribution is the smallest, i.e. the most specific one satisfying
� � ��� � ��
 � � .
7���� � @
	 � @
��� ��8���?�� � if 8
	 ?�� � and 7���� � @�	 � @���� ��8���?$: otherwise.

Namely, the most specific distribution associates the degree � � to
models of � � , and the degree : to countermodels of � � .
This remark can be generalized in order to characterize the most spe-
cific possibility distribution associated with a � -information base. A
solution 8 is satisfactory to a degree � if the highest degree of the
formula satisfied by 8 is equal to � , and 8 presents no guarantee at
all to be satisfactory if it falsifies all formulas of � . More formally,

Definition 3 ! 8"� 3 ,

7AL ��8���?
# : if !	9 � ( �&� ( <S����� 8��	 ?"� (������� � ( � 9 �	( �&� ( <0��� and 8$	 ?��	(�� otherwise.

Note that this definition of a possibility distribution is the dual of
the possibility distribution associated with N-information bases. In-
deed, when dealing with a N-information base, we are interested
in the falsified N-formulas having the highest priority while with
a � -information base, we are interested in the highest satisfied � -
formulas. With N-formulas, we apply a minimum specificity princi-
ple and we look for the largest possibility distribution agreeing with
the constraints. Then we are building the distribution from above by
intersecting the elementary distributions 7;, ��8��"? � if 8 	 ? � ,
and 7 , ��8��+? �! � , if 8 �	 ?A� , corresponding to each constraint
����� ,.��
 � , . Here with � -information, the distribution is built from
below by taking the union of the distributions 7���� � G
	 � G���� .

Example 3 Let us consider the following � -information base. Let
��? � 9 �
������� � �� <���9 �������
����� � ���=< � , where the symbols ��� �!�
�
and � � stand for ”beach”, ”sea” and ”sun” respectively. The first
� -formula says that the agent is weakly satisfied when there is sea
and sun. And the second � -formula says that the agent is fully sat-
isfied when moreover there is a beach. The possibility distribution
7 L associated with � is the following: 7 L �������"�
�#�"� � �L? � ,
7AL ��� ���$�%�
�&�%� � ��? �

� and 7AL ��8���?�: for other interpretations.

The following proposition shows that 7 L is the most specific possi-
bility distribution:

Proposition 1 Let � ? � 9 � ( �&� ( <V�'�F? �0�/- -/- �=��� be a � -
information base, and 7 L be the possibility distribution associated
with � using Definition 3. Then, 7 L is the unique and most specific
possibility distribution satisfying �����>(���
�� ( , for all 9 �D( �&� ( <��'� .

4.3 Semantic equivalence and DNF representation

The semantic equivalence between two � -information bases � and
� H is defined as usual:

Definition 4 Two � -information bases � and � H are said to be se-
mantically equivalent iff they generate the same possibility distribu-
tion i.e., 7AL ?L7 L�( .
Proposition 2 shows that two � -formulas with the same weight in �
can be replaced by their disjunction with also the same weight:

Proposition 2 Let � be a � -information base and 9 � �&�0< and 9'�����0<
be two � -formulas in � . Let � H ?L�
�� � 9 � � �0<�� 9 ���&�0< �0�!)�� 9 � 8 �����0<�� .
Then, � and � H are semantically equivalent.

Therefore, each subset of formulas with a given level of priority in �
can be replaced by the disjunction of its formulas. This leads to the
Corollary 1 where formulas can be replaced by their DNF form:

Corollary 1 Let � be a � -information base, and 9 � �&�0< be a � -
formula in � . Let � ? �94 � � -/-/- �=4+*H� be the DNF representation
of � , namely �-, 4 � 8 -/-/- 8 4+* . Let � H ? �
�  � 9 � �&�0<�� �.)
� 9 4 � �&�0<��/-.-/- � 9 4 * ���0<�� . Then, � and � H are semantically equivalent.

Note that this is the dual of the situation in N-information bases
where each N-formula can be replaced by its clausal form (CNF rep-
resentation). Namely, if �%,"/ � � -=-/-0�1/ 2 , then

� H ? �  � ��� �K� �,�3)
� �
/ � �&� �=�/- -/- � �
/ 2 � � �,� and

�
generate the same possibility distribu-

tion.

4.4 Subsumption

Within � -knowldege bases, subsumed formulas are those that entail
formulas in the base with a higher satisfaction degree.

Definition 5 Let � be a � -information base, and 9 � �&�0< be a � -
formula in � . Then, 9 � �&�0< is said to be � -subsumed in � if there
exists a formula 9 ���&� < in � such that �!
"� and � ;)� .

Indeed, we have the following lemma:

Lemma 1 Let � be a � -information base, and 9 � ���0< be a � -
subsumed formula in � . Then, � and � H ?"�E %� 9 �6� �0<�� are semanti-
cally equivalent.



Example 4 Let � 9 �
� 8 � ��� ��% � < ��9 �
� �=% �.<�� 9 ��� � % � < � be a � -information
base. It intuitively means that the agent will be satisfied to at least a
degree % � if there is a beach, and to at least a degree % � if there is
sea, and to at least a degree % � if there is either a sea or no beach
(e.g. he is not fond of river beaches!). Clearly, the second formula is
subsumed since if there is sea, then the agent will be already satisfied
to at least % � . The set of all possible interpretations is
3�?��K8 J �H� �
� ��� ��� �&8 � �E� � �&����� �&8 ) � �
� �I�6��� �&80+ � � �&����� � .
Let 7 L be the possibility distribution associated with � . Then,
7 L ��8 � ��? % � and 7 L ��8DJK��?$7 L ��80)K��?$7 L ��8 + ��? % � .
We have �
� ;'� � 8 �6��� and �+� � � � 2 ��� �
� 8 �6��� � , then 9 �
� �=% �.< is
� -subsumed in � . Let � H ?"�� � 9 �
� � % �.< � ?�� 9 � � 8 � ��� ��% � < ��9 ��� � % �K<�� .
Then, we can check that 7 L�( ��8 J � ?*7 L�( ��8 ) �@?*7 L�( ��8�+K� ? % � and
7 L�( ��8 � � ? % � . Hence, 7 L ?$7 L�( .
The following lemma shows that contradictions are not useful in �
since they do not influence the computation of 7 L , and can be re-
moved without changing 7 L . This is a crucial difference w.r.t. N-
based possibilistic logic.

Lemma 2 Let 9�� ���0< be a contradiction formula in � . Then, � and
� H ? �@ %� 9�� ���0<�� are equivalent, namely 7 L ? 7 L�( .
This is the dual of N-information bases where tautologies, which are
satisfied by all interpretations, can be removed [4]. Be aware that
9�� ���0<S��� should not be removed from � . 9�� ���0< means that, a priori,
all solutions are considered as satisfactory to at least a degree � .

4.5 Inference

Inference from a � -information base works in a reverse way.
Namely, the following resolution principle holds [5]:

9 � ���)���&�0< ��9 ��� : ��� <F; 9 �'� : �N�����D��� ��� � < .
This expresses that if making � �#� � true is at least satisfactory to
level � and making �%� : true is at least satisfactory to level � , then
realizing �'� : should be satisfactory at least to level �����D��� �=��� . As
for the possibilistic logic resolution rule in the case of N-based in-
formation, this rule can be useful for deriving equivalent forms of
� -information bases at the syntactic level. For instance, if the agent
is satisfied at level � to be at a sea with no beach, and at level � to be
on a beach, it should be satisfied at least at level �����D��� ��� � to be at
the sea (with or without beach).

5 Bridging N-information bases and
U -information bases

Since both N-based information and � -based information bases are
compact representations of the same distribution, the aim of this
section is to show how to transform a � -information base to a N-
information base and conversely.

5.1 From U -information to N-information bases

The aim of this section is, given a � -information base � , to construct
a N-information base

�
such that � and

�
induces the same joint

distribution i.e.,
7A�+? 7AL ,

where 7 � and 7 L are the possibility distributions associated with
�

and � applying Definitions 1 and 3 respectively.
Let us first consider a � -information base � only composed of one
formula i.e., � ? � 9 �6� �0<�� . The possibility distribution associated
with � is:

! 8���7 L ��8���?�� if 8$	 ?�� and 7 L ��8���?�: otherwise.
Note that 7 L is subnormalized if � 2 � . This means that

�
should be

inconsistent to a degree �&�  � � , which means that
�

should contain

��� ���D +� � . Moreover, in order to recover that all countermodels of �
are impossible, it is enough to have the formula ���6���K� in

�
. There-

fore, we can check that the N-information base associated with � is� ?5� ��� � �K�=� ���@���� � �,� .
Now, let us assume that we have two distinct � -formulas
� 9 � � �&� � < � 9 ��)0�&��)=< � with � � B"��) . Then, from Definition 3 we have:

! 8���7ALK��8���?
# � � if 8$	 ?�� � and 7ALK��8�� ? � ) if 8$	 ?�� � � ��� )

: if 8$	 ?�� � � �I�6��)0%
Again, if � � 2 � then 7AL is subnormalized. We need then to add
��� ���! "� � � . To express that models of �F)$�
�6� � are possible to a
degree ��) , we need to add:

���6��) 8 � � � �  ���) � ,
and lastly to express that countermodels of � � or of � ) are impossi-
ble we add:

��� � 8 ��) � �K� .
Therefore, the N-information base associated with � ?
� 9 � � �&� � < � 9 � ) �&� ) < � is:� ?5� ��� � 8 ��)0���K�=� ��� ��) 8 � � � �� ��).�=� ��� ���  � � �,� ,
which is semantically equivalent to
� ��� � 8 ��)0�K�K�=� ��� � � �  ��) �=� ���@�&�/ � � �,� .
The following generalizes the previous result:

Definition 6 Let �)? � 9 � ( �&� ( < � � ? �0�.-/- - �=��� be a � -information
base where each level contains one � -formula2 , and such that � � B
-/-/-�B�� * . We let � *	� � ?F: . We associate with � the following N-
information base:� ?�� ��� ��8 -/- - 8 �	( � �  � ( � � �&���	? � �/-/-/- �B�F�$)I� ���@�=�  � � �,� .

Then, we have the following proposition:

Proposition 3 Let � be a � -information base such that each level
contains one formula. Let

�
be the N-information base constructed

from � following Definition 6. Then, � and
�

are semantically equiv-
alent i.e., 7 L ?$7 � .

Example 5 Let us consider the following � -information base � ?
� 9 ���$���
� �%� � � ��< � 9 �
� ��� � � �) <�� 9 �
� � �� <�� which means that the agent
is weakly satisfied when there is only a sea, he is more satisfied when
moreover there is the sun, and he is fully satisfied when there is more-
over a beach. The set of possible interpretations is
3 ? � 8 J �I�6���#��� �
����� � � �D8 � �I� ���#��� �
���"� � �>8 ) �
�6����� �
����� ��� �D8�+5� � ����� �
��� ��� �D8 � �!���#��� �
����� � � �
8�
 � ��� � � �
� �'��� � 8�� � ���$��� �&��� � � �K8�
 � ��� �%�
� ��� � � .
We have 7 L ��8DJK� ? 7 L ��8 � ��?$7 L ��8 � ��?�7 L ��8�
K��?�: ,
7 L ��8�)K��?$7 L ��8��K��? �

� , 7 L ��8 + ��? �) and 7 L ��8�
 � ? � .
After applying Definition 6, we get:� ? � �&���������
� � � � � 8 � �
� ��� � � 8 �
� �=�.�=� �&����� ��� � � � � � 8
� � � �"��� �=� + � �=� �����#�"�
�#�"� � � �) �=� ���@� : �,� which is equivalent to
� � �
� � �K�=� � � � � + � �=� ����� � �) �,� , where the order of priority between the
goals is made clear. Indeed, we can check that using Definition 1
7 � ��8�
.� ? � , 7 � ��8DJK��? 7 � ��8 � ��?$7 � ��8 � � ?$7 � ��8�
K��?�: ,
7 � ��80).� ?L7 � ��8�� � ? �� and 7 � ��8 + ��? �) .

5.2 From N-information to U -information bases
We now provide the converse transformation. Namely, given a N-
information base

�
, we construct a � -information base � such that

) The fact that we assume that each layer is composed of a unique � -formula
is not a limitation. Indeed, as it is shown in Proposition 2, a set of � -
formulas having the same weight can equivalently be replaced by a unique
� -formula, with the same weight and which is composed of their disjunc-
tion.



� and
�

are semantically equivalent i.e., 7 � ?F7HL . Let us first con-
sider

� ?5� ���6� � �,� composed of one formula. We have,
! 8���7 � ��8���?L� if 8$	 ?"� and 8�� 7 � ��8�� ? �  � otherwise.

Note that all interpretations have a possibility degree at least equal to
�  @� . Then, � should contain the formula 9�� ���  @�0< . Now, in order to
recover that models of � have the highest possibility degree namely
� , we add the formula 9 �6���=< .
Then, we can easily check, applying Definition 3, that the � -
information base associated with

�
is:

�+?�� 9 � � ��< � 9��@�&�/ �0< � .
Let us now consider the case where

� ?Q� ��� � �&� � �=����� ) �&� ) �,� is
composed of two distinct N-formulas with � � B"��) . Then,! 8��

7 � ��8���?
# � if 8
	 ?�� � �+�F) ��7 � ��8�� ? �  ���) if 8
	 ?�� � ��� ��)
�� � � if 8'�	 ?�� � � %

Here, all interpretations have a possibility degree at least equal to
�  � � . Then, � should contain the formula 9�� ���  �� � < .
Now, to ensure that interpretations satisfying � � �)��) get the possi-
bility degree equal to � , we add the formula 9 � � �+�F) � �=< .
Lastly, to recover the fact that interpretations satisfying � � � � ��) are
possible to a degree �  � ) we add the formula 9 � � ��� � ) � �  �� ) < .
Therefore, the � -information base associated with

�
is:

�+?�� 9 � � ����)0� ��< ��9 � � ��� �F)K�K�� ��)�< � 9��@�=�� � � < � ,
which is equivalent to � 9 � � �)� ) � ��< � 9 � � � �� � ) <�� 9 �@���� � � < � .
The proof that 7 L ? 7 � can be easily checkedby applying Definition
3 and Definition 1 respectively on � and

�
. The following definition

gives the transformation for a general N-information base
�

:

Definition 7 Let
� ?�� ���D( �&� (����E� ?L�0�.-/-/-��=��� be a N-information

base where each level contains one formula, and such that � � B
-.-/-DB � * and we let � *	� � ? : . We define from

�
a � -information

base as follows:
�+?�� 9 � � � -/-/- �+� ( ���/ � ( � � <����	? � �/-/-/- �B�F�$)I� 9�� ���  �� � < � .

Then, we have the following proposition:

Proposition 4 Let
� ? � ���D( �&� ( �V��� ? �0�/-/- - �=��� be a N-

information base where each level contains one N-formula (if two
formulas have the same weight, we take their conjunction). Let � be
the � -information base constructed from

�
applying Definition 7.

Then,
�

and � are semantically equivalent i.e., 7 � ?$7AL .
Example 6 Consider again the N-information base

�
computed in

Example 5. After applying Definition 7, we get: �$? � 9 � � � � �#�
��� �K��< � 9 �
�#�"� � � �) <�� 9 � � � �� < ��9 �@� :K<�� which is equivalent to � 9 �����
�
� �'��� � �=<�� 9 � � �'��� � �) < ��9 �
� � �� < � . Indeed, we recover the initial � -
information base � given in Example 5.

6 Concluding discussions
The contribution of this paper is twofold. On the one hand, it pro-
vides a new compact logical representation of a possibility distri-
bution encoding preferential or plausibility ordering, which can be
computationally useful (since it generalizes DNF). It is also interest-
ing for elicitating information, either of the knowledge type or of the
preference type. In particular, we have shown that all basic notions
of standard possibilistic logic have their counterparts when dealing
with � -information bases. So possibilistic information can be han-
dled in terms of N-based logic, of � -based logic, of Bayesian-like
graphical nets, and in terms of comparative constraints, using recents
results [1], with bridges between all these representations.

On the other hand, the paper has particularly advocated the use of
� -based logic for the representation of preferences, since depend-
ing on the situations it may be more natural for the agent to express
preferences in terms of prioritized goals or in terms of more or less

satisfactory sets of solutions. In general, the agent will use both types
of expressions. In such a case thanks to the results of Section 5 it will
be possible for instance to turn what is expressed as a N-information
base into a � -information base and to fuse it disjunctively (in agree-
ment with Definition 3) with the rest of the information which is
directly expressed in terms of � -constraints. We may as well use the
N-based representation as a common framework for fusing (this time
conjunctively) preferences if it is more suitable. Besides the bridges
[1] with the comparative constraints-based representation of the form� ���	( � � ( � B�� ���	(3� ��� (�� can be also used for putting all the in-
formation in the same format, when a part of the preferences are
expressed in that way, which may be also very natural (see [3]).

Lastly, guaranteed possibility measures are also very useful for
representing ”bipolar” preferences. Indeed, it is often useful to dis-
tinguish between positive desires and rejected choices or solutions
(because they are more or less inacceptable or impossible for the
agent). In [2], it has been proposed to use a � -based representation
for encoding the positive desires and a N-based representation for
expressing what is not impossible for the agent. But in this case, we
use a pair of possibility distributions (rather than one as in this pa-
per) for encoding the two parts of the information with a consistency
condition between them since the positive desires of a rational agent
should be included inside what he does not reject. The consistency
condition is expressed by the constraints 7 L W 7A� . This condition
is different if we have two sets of rejected choices

�
and

� H , where
the consistency is expressed by the requirement that �����D��7�� ��7 � ( � is
normalized. Hence, one should be cautious in the use of consistency
condition. Depending on whether we deal with two sets of rejected
choices or with one set of rejected choices and one set of positive
desires, the problem is different. In particular, if one starts with a � -
base � and a N-base

�
, then even if we use our transformation of

� to an N-base
� H , the consistency condition should be 7 �!( W*7 �

and not �I� �D��7 � ( ��7A� � to be normalized. For instance, assume that
our language contains four interpretations � 8 � �&80) �&8 + ��8 � � , that the
agent expresses a positive desire � ? � 9 � � �=< � and a constraint� ? � �����,R��,� , where 4�� 5 ? �K8 � �&80).� and 4��65 ? � 8�) � 8 + � . It
can be checked that 7 L ��8 � �+? � B 7 � ��8 � �+? �  
R . Note that
the N-base associated with � ? � 9 � � ��<�� is simply

� H ? � ��� � �K�,� .
Clearly, �I� �D��7 � ��7 �!( � is normalized, but 7 � ( W 7 � does not hold.
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