A Deformation Tolerant Version of the Generalized
Hough Transform for Image Retrieval

Marco Andlli' and Alessandro Micarelli? and Enver Sangineto!

Abstract. We propose a new version of the famous Ballard’s Gen-
eralized Hough Transform (GHT) for image retrieval by shape sim-
ilarity. Indeed, the GHT is a very powerful pattern recognition tech-
nique, robust to noise and occlusion situations, utilized in hundreds
of different machine vision problems. Nevertheless, it is conceived
for an exact matching between the model and the input image, while,
in image retrieval, the user description of a figure is inherently ab-
stract and approximate, thus locally different from each data base
image. In this paper we present a version of the GHT locally tolerant
to deformations which successfully fits image retrieval peculiarities
without accuracy loss. The proposed method has been implemented
and tested using images randomly chosen from the Web with very
good experimental results.

1 MOTIVATIONSAND GOALS

Image retrieval is an emerging and interesting area of research and
application that has grown very quickly in these last twelve years. It
is based on the idea of retrieval of visual information (such as still
images) by using a user visual query. In case of retrieval by shape
similarity, the query usually is a stylized sketch drawn by the user to
specify the shape features she/he is interested to find in the images
of the system data base. In a recent survey on content based image
retrieval [12], the authors give an overview of the main methods and
techniques for image retrieval by shape similarity. Most of them can
be classified in three main approaches: statistic techniques, elastic
template matching and multiscale representations.

The former is a very common machine vision approach, consisting
in the extraction from an image of a set of n pre-fixed statistical
features. Each feature i (i = 1, .., n) is expressed by means of a real
value (v;), hence the whole image can be represented through a point
(v1, ..., v) inan-dimensional space. If we code both the user sketch
and the data base images with a set of points in R™, shape similarity
can easily be defined by means of a distance measure (for instance,
the Euclidean distance). A lot of commercial and research prototype
image retrieval systems are based on this principle, the most famous
among them is QBIC [5].

The main advantage of this technique is the possibility of a quick
indexing of large-size visual data bases, possibly organized exploit-
ing the spatial proximity in R™ of their images’ representations. In-
deed, feature space representation is the only approach which allow
data base indexing. All the other methods need to sequentially pro-
cess all the repository images to match them with the user sketch.

1 Centro di Ricerca in Matematica Pura e Applicata (CRMPA), Sezione
“Roma Tre”. Via della VVasca Navale 79, 00146 Roma, Italia.

2 Dipartimento di Informatica e Automazione (DIA), Al Lab, Universita degli
Studi “Roma Tre”. Via della Vasca Navale 79, 00146 Roma, Italia.

Unfortunately, statistical measures of an object bi-dimensional ap-
pearance (such as its area, compactness, elongatedness and so on)
only allow for poorly accurate descriptions of the object shape; thus
these techniques cannot be applied to domain independent reposito-
ries without loss in retrieval recall and precision rates. Moreover, they
are occlusion sensitive, because partial occlusions (or adjacent ob-
jects) modify the silhouette of an object, and consequently all global
statistical features defined on it.

A more accurate approach is elastic template matching. The idea
is based on the progressive deformation of the user sketch until it
matches the image. The sketch S is overlapped to each image I of
the data base and it is iteratively locally modified trying to mini-
mize the matching function M; s(O, D), where O expresses the
overlapping rate between S and I and D is the deformation en-
ergy. My s(O, D) gives the similarity measure between S and I:
the larger is O, the larger is M s(O, D), but the larger is D, the
smaller is M1 s(O, D). Jain et al. in [7] and Del Bimbo and Pala in
[3] present some working examples exploiting this idea, with differ-
ent formalizations of the function M.

Elastic template matching allows one to take into account the user
sketch shape in a more accurate way with respect to its representation
by means of a set of summarizing statistical features. Furthermore,
it is robust to occlusions. Nevertheless, often the iterations needed
to minimize M make the technique quite slow. In [7], for example,
an image is processed up to 12 seconds. Otherwise, it is necessary to
manually select the portion of I in which S is initially overlapped. In-
deed, elastic template matching is not translation invariant (nor rota-
tion or scale invariant)and the presence of a non-uniform background
in I can bring .S deformations to be attracted by background lines.

The multiscale representation approach [4] is based on a multi-
ple representation M (s) of a given object O, in which O is repre-
sented by different scale values (s). The bigger is s the greater is
the number of details of O represented in M (s). By changing the
scale factor we can change the abstraction level, and this seems to be
an important pre-attentive human vision mechanism. M (s) is usu-
ally obtained from O by extracting from its silhouette the curvilinear
abscissa which is then progressively smoothed. This method can be
very fast, because, at a given scale value, we have to match only
few elements for two given images. Nevertheless, it is specially suit-
able for isolated objects (without occlusions and with uniform back-
grounds) [9]. Indeed, curvilinear abscissa extraction needs a previous
segmentation of O external contours from the processed image. From
this point of view, the multiscale approach has some advantages and
disadvantages in common with the statistical one, and indeed M (s)
is often represented by means of a feature vector.

In this paper we propose a modified version of the Generalized
Hough Transform (GHT) for image retrieval by shape similarity is-

sues. The main reason that induced us to consider the GHT for image
retrieval is its robustness to occlusions, noise and non-uniform back-
grounds. It does not need previous manual segmentation and can
be applied to generic images without accuracy loss. The GHT was
initially proposed by Ballard [1] as a generalization of the original
Hough Transform (HT). It is a very powerful technique for general-
purpose image identification and it can be essentially viewed as an
efficient and elegant implementation of the (rigid) template match-
ing, capable to identify the known model M of an object shape in an
image I. It is very robust to partial occlusions, noise and non-uniform
backgrounds: indeed, a voting mechanism allows to automatically se-
lect in I the most probable position for /. In [10] the HT is used to
extract the main straight lines of an image in order to classify it by its
orientation. Concerning the GHT, it has never been applied to image
retrieval up to now, and the reason is that it performs an exact tem-
plate matching between M and I. Conversely, in image retrieval the
user sketch S and the image I usually do not exactly overlap because
the user only has an approximate idea of what is looking for when
draws S. Jain et al., in [7], state that:

“The Hough Transform method can be viewed as template
matching. However, it is a rigid scheme in that it is not capa-
ble of detecting a shape which is different from the template by
transformations other than translation, rotation and scalability.”

Hence, if we want to apply the GHT to image retrieval, the first
problem we have to deal with is its extension to a deformation tol-
erant template matching. We propose a solution to this problem al-
lowing the voting mechanism to increment a range of values in the
Hough accumulator (A) instead of a single element. Conceptually,
this means that the related positions of the points of the template M
(the user sketch) can locally vary in the selected image 1. Finally, we
adopt a different way to select local maxima in the accumulator A in
order to avoid false retrievals due to the augmented voting area.

The rest of this paper is organized as follows. In Section 2 we
explain in details our proposed method, while in Section 3 we show
the results of our experiments and we conclude in Section 4.

2 MODIFYING THE GHT

We give here a rapid overview of the GHT, referring to the origi-
nal paper [1] for details and to [6, 8] for two exhaustive surveys on
HT versions. Given a model M and a reference point p, in the M
Chartesian representation, the first step of the GHT is to construct
the R-Table T'. For each edge point p of M we store in T' the vec-
tor v = p, — p. For efficiency reasons, T is indexed by using p’s
gradient direction. In the second step, given an image I to recognize,
for each point p of I we increment the Hough accumulator Az, y] if
there exists a vector v € T's.t. v = p, —pand p, = (x,y). We look
for v in T by utilizing p’s gradient direction. The last step consists
in finding local maxima of A: they are the most likely positions of
M in I. As we can see, no a priori segmentation is needed, because
the original reference point p, is found in I looking for a pick in A
given from the intersection of a consistent number of votes.

A locally deformation tolerant version of the GHT (DTGHT from
now on) for image retrieval is composed of the following steps.

First of all, we use the user sketch S as a model to build the R-
Table T'. We do not index T' by means of the gradient direction of
the points in S. Indeed, due to local dissimilarities between S and a
generic image I of the data base, we usually expect that a point p in
S and a corresponding point p’ in I are differently oriented. Thus, T
is built according to the following algorithm:

R-Table Construction(S)
1 Compute the centroid p, of S.
2 For each point p; (i = 1, ...,m) of S, set: T'[i] :== p» — p;.

The second step of the DTGHT consists of a series of pre-processing
algorithms applied to each image I of the data base. These low-level
modifications of I are independent by S and can be done off-line,
when I is included in the data base. In the first pre-processing step we
apply the Crimmins filter [2] to the gray value image. This is a filter
used to reduce noise. Performing a few iterations with this filter we
enhance the contour pixels weakening the texture ones. Afterwards
we perform a standard edge extraction and thinning process by using
the Canny edge detector with Sobel 3 x 3 masks [11] (see Figure 1
and 2). From now on, we indicate with I the edge map of a generic
image of the system data base.

After this standard pre-processing, we propose two texture filters
to erase those thick textured areas which deteriorate the retrieval pro-
cess. The two filters work in this way. From each edge pixel p of I let
C(p) be asquared mask of n1 xm1 pixels centered in p. Furthermore,
let N be the number of edge pixels in C(p), ¢(p) the orientation of
the edge pixel p (¢(p) € [0, 2x[) and o the variance of all the edge
pixels’ orientation in C'(p):

o=y Wy e

p'€C(p) p'€C(p)

Then, we cancel the edge pixel p from the image I if:
N > thy Ao’ > thy, 2

where thy and tho are two pre-fixed thresholds (th: € [0,n3],
ths € [0,4x”[). Therefore, if, for a given edge pixel p, we have
that in its n1 x n1 neighbor C'(p) there are more then th, edge pix-
els with considerable orientation entropy (o2), we consider p as part
of a (disordered) textured area and we delete it.

For the second filter we define: N’ as the number of edge pix-
els p’ € D(p)naxns St ¢(p") = é(p) and we cancel p from I if
N’ > ths, where ths € [0,n3] is an empirical threshold. This sec-
ond filter aims to delete those edge pixels p s.t. in a na x ny neighbor
D(p) of p there are more then ¢ths edge pixels with the same orien-
tation as p. This is the case of shadows or particular ordered textures
which produce in edge extraction multiple parallel lines that do not
add further shape information.

Presently we empirically set: n1 = 40, no = 20, th: = 260,
the = 0.165, ths = 120. Figures 1, 2 and 3 show an example of an
image before and after the pre-processing phases.

The third step of the DTGHT is the voting phase. Given an image
I and a user sketch S represented by means of the offset vectors of
the R-Table T', we want to find in I the most likely positions of S
allowing local deformations for the S shape. To achieve this objec-
tive, we have to modify the GHT voting mechanism incrementing all
those accumulator’s positions A[z, y] in a range centered in p,, for
each edge point p of I and each vector v = p — p, in T. This is
efficiently achieved by means of the following algorithm, in which
we use two accumulators A and B both of the same dimensions of
the image I.

Voting Procedure(l,T)

1 The accumulators A and B are set to 0.

2 For each edge point p (p = (z,y)) of I do:
3 Foreachi(i=1,...,m)do:

Figurel. A gray-level image of a car.

Figure2. The edge map extracted from Figure 1.

4 Let T[l] = (zi,yi).
Then Alz + zi,y + yi] = Al + zi,y + yi] + 1.
5 For each point (z, y) of B do:
6 Foreach (z1,y1) st |z —z1| <=1, |y — y1| <=1, do:
7 B[$:y] = B[$,y]+A[$1,y1]-

Let us call Steps 1-4 of the above procedure the exact voting phase
and Steps 5-7 the spreading phase. The main difference between the
GHT and our proposed DTGHT is given by the spreading phase.
A point p = (z,y) in the final accumulator B (and thus also the
maximum value in B) receives votes by all those edge points p’ =
(«',y")in I s.t., for some i € [1,m], T[i] = (xi,v:), and:

|z + 2 —2'| <1, (€))

ly+yi =9I <L, @
where [is a pre-fixed value indicating the half side of a squared tol-
erance window centered in (z + i, y + y;). This tolerance window
allows S to be locally deformed by means of non-rigid translations
of its points. Presently, we have I = 10.

AN

[r

Figure4. The edge map of Figure 2 after the texture filters’ application
and an example of voting window (W).

In Figure 3 a point p’ on the user sketch S contributes to the R-
Table construction with the vector v (for some 4, we pose: T'[i] = v).
In Figure 4 an edge point p of I, by using the ith element of T', votes
in p, in A accumulator and in the whole window W (p,) in B final
accumulator. We call W (p,) the voting window centered in p, and
with fixed side length 27 + 1.

It is worth noting that the operations performed by the spreading

Figure5. The user sketch superimposed to the edge map after the global
maximum detection.

phase in the above algorithm could conceptually be done in Step 4
directly incrementing all the elements A[p:] s.t. p1 € W (p.) (p» =
p~+T7i]). Nevertheless, Step 4 is nested in Step 2 and Step 3 loops and
this second solution would make dramatically worse computational
complexity and execution times.

The final step of the DTGHT concerns maxima detection in B
accumulator and data base images’ ranking according to the user
sketch. We have modified the traditional HT local maxima detection
taking into account the new voting mechanism. Let M be an array of
the same dimensions as B. If p isa point in B accumulator and W (p)
the voting window centered in p, we define W'(p) to be a mask of
(20" + 1) x (20' + 1) elements of B centered in p and with I' > 1
(presently we empirically set I’ = 50) and F(p) = W'(p) — W (p).
Finally, if IV is the number of elements of W (p) (N = |W (p)|) and
N’ is the number of elements of F(p) (N’ = |F(p)|), we define the
average voting value in p (av(p)) and the average voting value in p’s
neighbor (nav(p)) respectively by:

av(p) = M (5)
nav(p) = w (6)

With the above definitions, we associate to each image I of the
system data base a similarity degree DTGHT (S, I) with the user
sketch S computed by using the following algorithm.

Maxima Detection(B)

1 For each element p of B do:

2 Compute av(p) by means of (5).

3 Compute nav(p) by means of (6).

4 Mlp] := av(p) — nav(p).

5 DTGHT(S,I) is the maximum value in M.

Images I, I», ... of the data base are ranked according to their simi-
larity degree with respect to S and then proposed to the user.

Figure 5 shows the system output with respect to the image of
Figure 1. Figure 6, instead, shows an example in which the system
proposes to the user the first ten ranked images it retrieved according
to the given sketch (in this case, the profile of a quadruped).

The above presented maximum detection can be viewed as a sort
of extension of the traditional local maxima detection in Hough ac-
cumulators. Indeed, in HT techniques, a mask C' is overlapped to the
accumulator to look for the points m s.t., for each point p € C,
B[m] > BIp]. Conversely, we use two masks, W and W’ be-
cause our voting area is now augmented (from a point to a squared
window W). Indeed, initial experimental trials in which we simply
posed DTGHT(S,I) = B[m] (m being the global maximum in
B) brought to a greater number of false retrievals with respect to
the present evaluation method. The reason is that some photos with
objects containing large areas with dense noise or textures (such as
bushes, trees with thick leaves, ...) can produce a great number of
false votes with a global maximum in B not corresponding to the
user sketch shape.

This situation can be avoided (or at least strongly limited) in two
ways. The first is by using some pre-processing filters to delete thick
texture areas after the edge extraction and thinning phase. We de-
scribed these filters in the second step of the DTGHT.

The second way is to evaluate the results of the accumulator B not
only with respect to the value of its maximum B[m] but also taking
into account the average value of the vote in the neighborhood of m

outside the voting window. Indeed, if in I there is a thick texture or
noise area, it will produce in B a corresponding area E with high
votes. But the entropy of the noise will produce a rather uniform
distribution of the votes in E, so that we can not isolate in it a point
considerable higher than its neighboring. On the other hand, a correct
presence of S in I will concentrate its votes in a restrict area (not
much greater than 7 (m)), and this can be detected by subtracting
nav(m) from av(m).

Before concluding this section, we remark some features about the
DTGHT. It is translation invariant and does not need segmentation.
Moreover, it can tolerate deformations fixed by the parameter [(from
(3) and (4)). However, like the original GHT, it is not rotation nor
scale invariant. To cope rotation and scale changing factors we have
to iterate Steps 3 and 4 of the transform for discrete values of rotation
and scale. Nevertheless, it must be noted that the deformation toler-
ance allows scale invariance for differences less or equal to /, and, for
foreground searched objects, few iterations (may be 4-5) cope almost
all situations. Regarding rotation, we are studying the possibility to
use the edge orientation information to make the method rotation in-
variant. Nevertheless, in an image retrieval domain, we can suppose
the user usually draws its sketch with the right object orientation (an
“horizontal” car, and so on).

3 EFFICIENCY AND RESULTS

In Step 2, 3 and 4 of the DTGHT we use squared masks to compute
some values from an original bi-dimensional array. This operation
can be computational optimized by computing, for each row of the
array, only the first mask and then deriving the others by the last one
just computed with a dynamic programming technique. For example,
regarding the spreading phase, we observe that:

> A,)

P1EW (z,y)

Blz,y] =

if z = [(we suppose to compute the spreading phase for only those
points in B far at least I from B’s boarders), and:

Ble,yl=Blz—1y]— > Apl+ Y

P1EWI(2—1,y) P1EW, 11 (z,y)

A[pl]a
8

if z > I; where W;(p) means the i-th column of the voting window
W(p).

If we suppose Vi to be the size of the array (|| = |S| = N1) and
1; the side of the mask, the above algorithm is O(N11;). To compute
each DTGHT step computational cost, in the following we will use
this result together with the assumption that n is the number of edge
pixels of I and m the number of edge pixels of S.

The second Step of the DTGHT is composed of low-level filters.
The standard ones are O(n). Texture filters are O(N1ny), n1 being
the side of the used masks. Moreover, they can be applied off-line, at
each image acquisition. As a consequence, the whole computational
(on-line) cost of the DTGHT algorithm is given by the sum of Steps
1,3 and 4.

Step 1 is linear with the number of edge pixels of S (O(m)). In
Step 3 the exact voting phase is similar to the original GHT and has
the same computational cost O(nm), given by its two nested loops.
The spreading phase, instead, has a computational cost of O(N1n-),
where np = 21+ 1 is the size of the voting window. Finally, Step 4 is
O(Ning), where ng = 21’ + 1. Therefore, the whole computational
cost of the DTGHT is given by:

O(m + nm + Nina + Ning) = O(nm + Nins). 9)

Typical values for n, m, Ny are: n = 7000, m = 1500, N; =
90000, which make O(nm) and O(Nins) of the same magnitudo
order. From this and from (9) follows that the DTGHT complexity
order is:

O(nm). (10)

This result shows that the original GHT and our modified version DT-
GHT have the same computational cost. Indeed, the spreading phase
allows one to deal with non-rigid transformations of the template in
the image but does not affect the whole consuming time.

We implemented our method in Java 1.3 and tested it on a Pentium
111, 850 Mhz, 192 MB RAM. All our trials (a few hundreds) has been
executed in less than 1 second (0.3 seconds on average) with images
from 200 x 200 up to 380 x 350 pixels. The system data base is
composed of 225 images randomly taken by the Web. They show a
great variety of subjects: beside the ones shown in Table 1, we have
included crucifixes (10), vases (10), animals, faces, landscapes, air-
planes, boats, fruits, mushrooms, various cups, a picture of the Tour
Eiffel, an ice cream photo,... and so on. No simplifying assumption
was made about images: they have non-uniform backgrounds and of-
ten the retrieved objects are occluded by other objects. Also lighting
conditions and noise degree are not fixed: we simply took our images
randomly browsing the Web.

The user sketches used for experimentation (such as the car and
the quadruped shown in this paper) have been drawn by a person
not aware of the data base images’ shapes: we only manually fix the
sketches’ approximate scale because the method is not scale invari-
ant and we still not perform iterations to cope different scale values.
Table 1 summarizes the results regarding the first 10 retrieved im-

Table1l. Correct retrievals in the first 10 positions.

Object type Items in the data base | Ranked in 1-10
Car 24 10
Guitar 17 10
Saxophone 14 9
Horse 18 8
Pistol 10 10
Tennis racket 10 8
Bottle 11 7
Watch 12 9

ages for each input sketch. The second column shows the number of
objects of a given type (first column) in the data base, while the third
the correct retrievals in the first 10 positions.

As future work we are planning a more systematic testing of the
DTGHT using benchmark data bases such as the Columbia COIL
data set or the MPEG-7 shape silhouette data base.

4 CONCLUSIONS

In this paper we have presented a modified version (DTGHT) of the
GHT for deformable template matching. We have shown that is pos-
sible to augment the GHT voting area without loss in accuracy nor
in computational complexity. The larger voting area allows the user
sketch to change in the compared image, thus the method is specially
suitable for image retrieval by shape similarity issues.

With respect to statistic and multiscale methods (Section 1), our
proposed DTGHT is not suitable for data base indexing. Neverthe-
less, it does not need a previous (often not automatic) segmentation
of the objects’ silhouettes. Conversely, with respect to elastic tem-
plate matching techniques, the DTGHT also takes into account the

Figure 6. The first 10 images ranked by the system according to the sketch
of a quadruped (in the bottom-right corner).

user sketch shape in an accurate way but does not need initial set-
ting of the template on the object appearance in the image, nor needs
time-consuming iterations to minimize the matching function (see
Section 1).

ACKNOWLEDGEMENTS

We want to thank Virginio Cantoni for the interesting and stimulating
discussions about Hough Transform techniques.

REFERENCES

[1] D H Ballard, ‘Generalizing the Hough Transform to detect arbitrary
shapes’, Pattern Recognition, 13. No. 2, 111-122, (1981).

[2] T Crimmins, ‘The geometric filter for speckle reduction’, Applied op-
tics, 24. No. 10, (1985).

[3] A Del Bimbo and P Pala, “Visual image retrieval by elastic matching of
user sketches’, IEEE Trans. on PAMI, 19. No. 2, 121-132, (1997).

[4] A Del Bimbo and P Pala, ‘Shape indexing by multi-scale representa-
tion’, Image and Vision Computing, 17, 245-261, (1999).

[5] M. Flickner et al., ‘Query by image and video content: the QBIC sys-
tem’, IEEE Computer, 28. No. 9, 23-32, (1995).

[6] JMHlingworth and J Kittler, ‘A survey of the hough transform’, Computer
Vision, Graphics and Image Processing, 44, 87-116, (1988).

[7]1 A.K.Jain, Y. Zhong, and S. Lakshmanan, ‘Object matching using de-
formable templates’, IEEE Trans. on PAMI, 18, 267-278, (1996).

[8] V F Leavers, ‘Survey: which hough transform?’, Computer \Vision,
Graphics and Image Processing, 58, 250-264, (1993).

[9] F Mokhtarian, ‘Silhouette-based isolated object recognition through
curvature scale-space’, |IEEE Trans. on PAMI, 17. No 5, 539-544,
(1995).

[10] E Di Sciascio and A Celentano, ‘Similarity evaluation in image retrieval
using the Hough Transform’, Journal of Computing and Information
Technology, 4. No. 3, (1996).

[11] L Shapiro and G. Stockman, Computer Vision, Prantice hall, 2001.

[12] A W M Smeulders, M Worring, S Santini, A Gupta, and R Jain,
‘Content-based image retrieval at the end of the early years’, IEEE
Trans. on PAMI, 22. No 12, 1349-1380, (2000).

