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Abstract. In this paper we address the problem of learning behav-
iors for autonomous mobile robots. We particularly focus on methods
which enable a human user to train a robot in its real destination envi-
ronment without giving an a-priori model. Using complex visual in-
put typical of real situations in office environments we show that very
simple visual features can be used to represent the perception/action
relation specific to a given behavior. From this point we propose a
learning model relying on a statistical collection of two-pixels fea-
tures for representing a behavior. We then present the experiments
made on a real robot and propose extensions of the model for active-
perception and behavior selection.

1 INTRODUCTION

Robots of our near future will be situated in the real world [3, 15]
and most will be in relation with humans [6]. They will have to be-
have in ways useful to human users while being autonomous in un-
modeled dynamic environments. How can robots acquire those be-
haviors? This question interests robotics but also any fields where
computers have to perceive and act in the real world. Some of the
robots’ behaviors can be explicitly programmed, but this requires an
explicit description of the tasks and a model of the environment were
invariants can be distinguished (invariants such as distance to wall
, position of an object, etc...). Some behaviors can be learned using
teleological methods such as reinforcement learning [16], or genetic
algorithms [10]. This requires again, to define explicitly the behav-
iors by the intermediary of a reward or fitness function and to use a
trial-and error scheme impossible to achieve in most environments.
The problem of the explicit definition of the behavior is displaced but
still has to be faced by an expert designer.

From the human user point of view, a good way to define a behav-
ior is to interact directly with the robot in the destination environ-
ment. Several methods have been proposed in this direction : Learn-
ing by demonstrations or from examples, Memory-based learning
[18, 1, 11] , Imitation [13, 12, 2, 7] or Supervised Learning [19].
Those approaches focus on the learning of complex action sequences
but they rely on simple predefined and constrained percepts - most
use well known shapes, centroids of simple color objects and mini-
mal environments.

In our thinking, the perception and its intrinsic complexity should
have a structural impact onto a behavior learning model. Perception
is not a pattern recognition subproblem which can be studied sepa-
rately of the problem of action learning in an environment. Perceptual
features should have the properties of:

1. Compliance with realistic environments.
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Figurel. Typical robot vision in a structured environment - The images
are obtained from the robot monoscopic color camera - they can be occluded
for instance by persons passing near the robot.

2. Robustness to noise induced by sensors or environmental condi-
tions.

3. Robust to occlusions occurring frequently when a person, an ob-
ject or even self occludes the visual field.

4. Postures distinction to discriminates between robots viewpoints ,
(ie: approaching an object from left or from center left, looking at
a very close object...).

5. Tractability so as to obtain features at a low computational cost
along real-time processing.

6. Support of the perception/relation established along a behavior.

7. Extendibility to allow behavior adaptation to environment
changes.

Since the work of D. Marr [17], the Computer Vision field has pro-
vided a lot of general methods, ranging from recognition [4], image
classification and retrieval by Content [20, 5] to three dimensional vi-
sion [9]. However those methods are not conceived in the perspective
of behavior learning and not do not fit the above properties.

1.1 Sdectivity of n-pixelsfeatures

Surprisingly very simple visual features made of 2, 3 or 4 pix-
els can be used to discriminates complex robot visual perceptions.
This can be shown experimentally with the following Select(p)
test which measures the discriminating power of a feature made of
p=1,2,3, ... distinct pixels - pixel defined by a tuple (x, y, color).



The selectivity test is performed on a set .S of n = 1200 images sim-
ilar to fig. 1 and obtained along robot wandering sessions.
For p-pixels select(p) is computed as follow:

1. Pick randomly an image of S.

2. In the image pick p pixels randomly.

3. Count the number r of images of S containing the complete fea-
ture (with the p pixels at same position with same color).

4. Report Select(p) as the percentage of successful identification
with p pixels..

T*H x 100 1)

Select(p) = {1 -
The results are averaged over 100 trials to obtain a better statistical
significance. The plot of E[Select(p)] in figure 2 shows that, on an
average, 4 pixels are sufficient to discriminate between several visual
perceptions.
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Figure2. FE[Select(p)] : averaged percentage of successful image
identification. A simple p-pixels feature (picked randomly) is used to
identify an image in a set of 1200 images collected by the mobile robot.

2 A MODEL FOR BEHAVIOR LEARNING

We can use the p-pixel features to construct a model for robot learn-
ing by examples. In this supervised learning scheme, the human tutor
records several examples of a target behavior (ie: a docking manoeu-
vre, a complex succession of operations in a game or for person as-
sistance ,.. ) by remote controlling the mobile robot. The tutor shows
several variants of the behavior from different postures. The purpose
of the learning mechanism is therefore to produce a synthetic behav-
ior from those heterogeneous parts.

2.1 Input examples

The examples are sequences made of { X, Y} couples where X is

the perceived video input image at time ¢ and Y the corresponding

action vector. In practice X is a 40x30 pixels image and Y is a 2D

vector made of right and left wheels velocities.
| leftwvelocity

Y= [ right velocity ] @

The concatenation of all the examples gives the set F' of frames
which are used as input of the learning algorithm.

F:{{X17Y1}7{X27Yé}7"‘{Xn7Yn}} (3)

2.2 Collection of Two-Pixels Features

A behavior is modeled by a redundant collection of two-pixels fea-
tures (see eq. 4) which encodes the perception/action relation specific
to the behavior. In this collection each feature is associated to an ac-
tion vector y giving a statistical representation of the action to per-
form when the feature is detected. The choice of two-pixels rather
than three or more is a compromise between a sufficient discrimi-
nating power and the possibility to assimilate similar images. The
collection is redundant, it contains more features than the number
of example frames, thus several features can be detected in a given
image. This is the averaged contribution of several detected features
which is used to determine the robot actions. The collection has the
following form:

B = {{pizelly, pizel2:1,7,}, ..., {pizelly,, pizel2n, 7, }} (4)

Where pizel denotes a (x, y, color) t-tuple and 3 denotes an action
vector. This representation is robust to noise, occlusions, and minor
environment changes due to its distributed and redundant nature, it
also permits to fuse several examples into a single structure because
it remains at the pixel level.

2.3 Pixel-Based Learning Algorithm

The learning algorithm used to build B from the examples is de-
rived from select(p) and is made of three steps. The step 1 is used to
evaluate the examples complexity and deduce the number of features
needed. The step 2 samples the examples frames to obtain the fea-
tures. The step 3 associated a statistical representation of the action
to each feature.

1. Count np the number of distinct tuple (z,y, color) in F and set
m = «a X np (in experiments o« = 0.2).
2. For each of m features:

(a) Pick a frame randomly in F.
(b) In this frame pick randomly pizell and pizel2.

3. For each feature f, compute %, the arithmetic mean of Y over
the frames containing f.

In Step 2 we do not want to over-sample the less informative sur-
faces like large walls, carpet... and we sample so as the resulting den-
sity of the present pixel classes in the collection B is uniform. The
algorithm can be rearranged to obtain a time-complexity in O(n)
where n is the number of frames.

Figure3. Autonomous realization of behavior B. Each feature detected in
current input image X is represented by two linked pixels.



2.4 Autonomousrealization of a behavior

To control the robot in real-time the behavior has to produce cycli-
cally an effector vector Y from the input video image X. This is
obtained by averaging the contributions of detected features.

1. From the input image X, determine the subset A(X) of features
of B found in X.

2. Compute Y as the average of the 7 over the elements of A(X) :
— 1
Y= —— Y. (5)
|A(X)] 2

3. setY « Y.

This approach benefits of advantages which are common to Ensem-
ble Methods [8] particularly the statistical determination of the so-
lution. It is adapted to the frequent cases where the robot perceives
its environment partially, occluded or even changed.The autonomous
behavior is reactive and does not need explicit reference to time.

2.5 Utility measure

Beside the action response Y, the model can provide a simple mea-
sure of the pertinence of the current visual perceptions for a given
behavior B. This information can be used in real-time to improve the
autonomous realization of the behavior. A utility measure Up (X) is
defined by the number of features of B found in perception X (equa-
tion 6). Ug(X) is low if the robot is in front of a totally unknown
scene, contrarily Ug (X)) is high in front of a scene belonging to the
learning examples. If the robot perceives a partial or shift image with
respect to the examples, Ug (X) has a medium value.

Up(X) = [A(X)| (©)

This utility measure can be used for active perception and behavior
selection.

2.6 Active perception

Along the realization of a behavior a robot can be in situations where
its perceptions are difficult to exploit. This happens for instance if
someone passes near the robot or if it is in front of an unknown scene.
In those situations the robot can determine that the utility measure
Up(X) is below a given threshold and it can actively search for a
better posture before continuing to move. This can be done by ro-
tating the robot itself or the camera and looking where the Ug (X)
measure reaches a local maximum. This approaches associates to the
learned material a build-in scan/search schema. The plot of Ug(X)
in figure 5 has been obtained while the camera was quickly scanning
the environment by doing a panoramic movement (see fig 4). U (X)
is maximal for the views which can be used by the behavior.

2.7 Behavior selection

A real application needs to combine several behaviors and it must
be able to select one among several by considering the current con-
text, the goals to be reached and the robot’s internal state. The U (X)
provides a useful information to determine which behaviors could
be activated in a given context and compare their chance of success.
As shown in figure 6, for two distinct behaviors B1 and B2 respec-
tively learned in environments E'1 and E2, the measures Up1(X)

Figure4. A behavior B has been learned, first consisting entering a small
room. This figure shows a camera panoramic movement of a corridor and
room entrance. The light pixels correspond to detected features of B.Their
are more features detected in front of the room entrance,indicating when B

can be applied. Up (X)) is reported in figure 5

Figure5. Upg(X) measured while the camera is performing a camera
panoramic. Corresponds to the successive views of figure 4

and Up2(X) obtained during wandering in environment E1 indi-
cates that B1 is more appropriated than B2. An action selection
scheme can use this situated information to determine the right be-
havior.
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Figure6. Comparison of the U(X) measures for two behaviors B1 and
B2, when the robot wanders in the environment where B1 has been
learned.Clearly U(X) reports than B1 can be realized with more success
than B2. A maximum at ¢ = 9s can be exploited by an action selection

algorithm to launch B1.



3 EXPERIMENTS
3.1 Experimental platform

For the experimentation we use a mobile robot Pioneer 2dx (fig. 10)
equipped with a monoscopic color camera and an Pentium 200MHz
on-board computer. During recording of examples the robot is tele-
operated with a joystick via radio-ethernet. The video images are
acquired at a rate of 3 images per second for the recording of exam-
ples as well as for autonomous behavior realization. The images are
reduced to a resolution of 40x30 and normalized. The two motored
wheels are controlled separately with a precise value ranging from
-600.0 to 600.0 mm/s.

The color information associated to each pixel is not directly the
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Figure7. The 30 fixed patterns (5x5 pixels each) used to associate a class
to pixel.

red,green, blue information obtained from the video input. Instead to
reduce noise the color combines the hue,saturation and value (HSV)
of the pixel and a class describing the pixel’s immediate neighbor-
hood. The hue, saturation and value of the pixel are obtained from a
classical HSV transform and are respectiveley coded with 4, 3 and
1 bits. The class of a pixel is obtained by comparing its 5x5 pixels
neighborhood to each of a set of 30 fixed patterns (figure 7). The 30
patterns have been obtained separately by training a Kohonen Self
Organizing Feature Map (SOMF) [14] on a set of images coming
from various places in our office. Finally the color of a pixel is an ex-
pression equivalent to: color = hue A saturation Avalue A class.
This coding has proven to provide in practice stable information in
various indoor environments.

3.2 Experiment without active perception

The first behavior experimented is chosen to mimic a docking ma-
neuver: entering in a small place and approaching a device sym-
bolized by a color box. To learn a behavior we record 7 examples
movies each with a duration of a few tenth of seconds. The number
of features generated for such behavior is approximately 20.000. A
first observation is that the learning phase is very fast, typically 20
seconds on a pentium 1l 300MHz wich is much faster than a neural
networks training phase on similar data. It be can asked whether the
representation used is able to encode the examples, or say differently
if it is able to learn the regression function Y = f(X) compatible
with the given data. The figure 8 shows the value of the left wheel ef-
fector recorded along an example and the response of the behavior to
the same succession of images. The response fits the example despite
that the behavior also encodes 7 other examples. This is confirmed
if we compare the statistical distribution of actions in the examples
to the statistical distribution of actions in the corresponding behavior
(supported by 7 values).

What are the model’s performances while realizing the behavior in
real situations ? For a behavior consisting in negotiating the entrance
in a small room and then approach a device and slow down when sit-
uated near the device, the robot performed well in 45 percents of the
cases. The cases where it failed where mainly due to its confrontation
to unknown scenes. However this can be sensibly improved with an
active perception mechanism described below.

Left wheel velocity (mmis)
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Figure8. Comparison of actions recorded along an example to the
response of a behavior to the same visual input (only left wheel velocity is
shown)
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Figure9. 2-D histograms representing the statistical distribution of actions
in a set of examples (a). It can be compared to the statistical distribution of
2d vector g in the generated behavior(b).

3.3 Experiment with active perception

With the active perception improvement it is now possible to repro-
duce a complex task such as a slalom. In the slalom task (fig. 10) the
robot has to slalom between three stakes and then approach a goal
box.To learn the task we recorded 5 examples each example being
a possible variation of the slalom. For the evaluation all trials start
from the start position in front of the first stake, a trial is considered
successful if the robot follows correctly the path, do no touch the
stakes and reaches the goal with a 20 cm error. The robot is consid-
ered to have achieved 2/3 of the task if it passes correctly the first



percentage of success
83%
53%

2/3 of the task
complete task

Table1l. Slalom Task results over 30 trials with active perception

Figure10. The slalom task

two stakes. The results are recapitulated in table 1 and correspond to
the average over 30 successive trials. The robot has succeeded com-
pletely 16 times over 30 and has succeeded 2/3 of the task 25 times
over 30.

4 CONCLUSION

In this paper we have proposed a novel approach for the learning of
robot’s behaviors relying on the use of minimal pixels features. Our
model is conceived so as to capture the perception/action relation
which supports a behavior demonstrated by a tutor in a real environ-
ment. Because it is fast, requires few examples and need no a-priori
information it is well suited to our central objective which is the on-
line training of robots by non human users. The representation used
for the behaviors allow various operations which permit to adapt the
behavior to the environment, it can be extended or shrink-ed, filtered
or fused and is sufficiently minimal to fit a lot of algorithms. The
intelligibility of the representation allows to analyze a-posteriori the
behavior data. This last property is particularly useful for providing
an understanding of robots’ actions to the human users. Finally in our
thinking the pixel-based approach is not limited to robot learning but
could be transposed for problems involving 2-D perceptual devices.
Our future work is oriented toward online interactive adaptation of
the behaviors after a learning phase.
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